Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В завершающей 3 части постараюсь вкратце объяснить как запустить телеграм бота на VPS. Предыдущие части доступны здесь и здесь .
Сегодня рассмотрим кейс, в котором классические статистические критерии не работают, и разберёмся, почему так происходит. Научимся строить свои собственные критерии по историческим данным. Обсудим плюсы и минусы такого подхода.
Python-разработчики, как правило, хорошо знают, что такое и для чего нужен GIL, вопросы по нему встречаются на большинстве собеседований, я и сам люблю их задавать. Но в CPython его скоро не будет. Да, core-разработчики CPython взяли курс на его удаление.Разберём основные концепции того, как это будет произведено, с обзором соответствующего PEP 703.
Далее пойдёт речь про бэггинг и мой самый любимый алгоритм — случайный лес. Не смотря на то, что это одни из самых первых алгоритмов среди семейства ансамблей, они до сих пор пользуются большой популярностью за счёт своей простоты и эффективности, зачастую не уступая бустингам в плане точности.
В предыдущих статьях статья 1, статья 2, статья 3 мы рассмотрели основные подводные камни автоматизации и анализу АБ тестов, привели подробный обзор статей по этой теме, а так же рассмотрели типичные задачи аналитика данных. В контексте АБ-тестов одним из ключевых аспектов является механизм разделения на группы, который в терминологии специалистов часто называется сплитовалкой.
Начнем рубрику, пожалуй, с пары новых книг про Python, которые вышли за последний месяц. Ревью книг — не копия текста с сайта издательства, а сугубо наше мнение, после прочтения.
Валидация данных является контрактом – этаким камнем в фундаменте бизнес-логики программы.
Сегодня PyGMTSAR представляет собой наиболее мощный инструмент среди всех открытых InSAR
В данной статье рассмотрим пример предобработки данных для дальнейшего исследования, например, использование метода кластеризации. Но для начала проясним, что из себя представляет машинное обучение и из каких этапов оно состоит.
В машинном обучении есть один неоспоримый плюс- возможность заниматься чем угодно, если об это 'что угодно', есть данные. В данной статье мы обработаем данные с орбитального телескопа Kepler, сделаем отбор признаков и построим ml модель для классификации экзопланет. Это первая часть статьи с этими данным.
Статистические исследования и эксперименты являются краеугольным камнем развития любой компании. Особенно это касается интернет-проектов, где учёт количества пользователей в день, времени нахождения на сайте, нажатий на целевые кнопки, покупок товаров является обычным и необходимым явлением.
А теперь о том, что происходило в последнее время на других ресурсах.
Представьте себе, что вы читаете книгу и хотите найти все места, где упоминается слово «кот». Не знаю, зачем вам это, но пока остановимся на том, что вы это хотите. Вот очень надо.Так как это сделать?
Следующим мощным алгоритмом машинного обучения является AdaBoost (adaptive boosting), в основе которого лежит концепция бустинга, когда слабые базовые модели последовательно объединяются в одну сильную, исправляя ошибки предшественников.
У меня много статей в закладках. Многие из них я добавил, чтобы прочитать позже. Эта статья не про то, почему так произошло и как с этим бороться, а про то, как выбрать статью для удаления чтения. Давайте найдем самые лучшие статьи. Критериями могут быть, например, рейтинг, просмотры и т.д. И красиво оформим в виде HTML-файла.
Была классическая задача: по табличным данным предсказать некое событие — случится или нет. И как бы я к этим данным ни подбирался, с какого ракурса ни смотрел, результат, увы, не впечатлял. Данных было мало, а то, что было, обладало слабой предсказательной силой. Хотя казалось, что что-то вытащить все-таки можно.
На сегодняшний день градиентный бустинг (gradient boosting machine) является одним из основных production-решений при работе с табличными, неоднородными данными, поскольку обладает высокой производительностью и точностью, а если быть точнее, то его модификации, речь о которых пойдёт чуть позже.
Сегодня мы рассмотрим проект с открытым исходным кодом, позволяющий создавать дипфейки, клонировать речь, генерировать видео, удалять текст и объекты, а также получать изображения без фона, прямо на вашем компьютере. Поговорим о Wunjo AI и его возможностях для тех, кто еще не в курсе.
Поделюсь личным опытом болей и радостей жизни с тестами и без. Обсудим лучшие и худшие практики. Покурим вместе код.
Про то, как структурировать метрики прометея в коде, выстроить удобные абстракции. Как меняется парадигма при переходе со statsd на прометей. Подводные камни при работе с прометеем.