Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Очень часто приходится сталкиваться с проектами в которых DRF Serializer используется только для вывода данных. А для ввода данных и их верификации используются какие то отдельные функции. Что как мне кажется совершенно неправильно. Если в проекте используется DRF Serializer то именно он и должен быть задействован для ввода и для вывода.
Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом.
Взлёт искусственного интеллекта привёл к популярности платформ машинного обучения MLaaS. Если ваша компания не собирается строить фреймворк и развёртывать свои собственные модели, есть шанс, что она использует некоторые платформы MLaaS, например H2O или KNIME. Многие исследователи данных, которые хотят сэкономить время, пользуются этими инструментами, чтобы быстро прототипировать и тестировать модели, а позже решают, будут ли их модели работать дальше.
Данная статья является сборкой-компиляцией нескольких (основано на первой) статей, как результат моих изучений по теме jwt аутентификации в джанге со всем вытекающим. Так и не удалось (по крайней мере в рунете) найти нормальную статью, в которой рассказывается от этапа создания проекта, startproject, прикручивание jwt аутентификации.
О том, как быстро создать скелет веб-проекта на Django, uWSGI и PostgreSQL, доставить его в облако и запустить там.
Как быстро и просто создать страницу с пользовательской формой для административного интерфейса Django.
В этом руководстве рассмотрим установку и использование простой библиотеки для проверки версий внешних зависимостей.
Декоратор— это название одного из самых популярных шаблонов проектирования, используемых в настоящее время, хотя часто мы используем его, не зная, что это именно шаблон проектирования.
Недавно мне пришлось начинать проект нового веб сервиса, и я решил протестировать максимальную нагрузочную способность Django, а заодно сравнить её с Flask’ом и AIOHTTP. Результат показался мне неожиданным, поэтому я «просто оставлю» его тут.
На диаграммах ниже приведены результаты простейшего Apache Benchmark’a для фреймворков Django версии 3.1, Flask 1.1 и AIOHTTP 3.7. AIOHTTP работает в «штатном» однопоточном асинхронном режиме, Django и Flask обслуживаются синхронным WSGI сервером Gunicorn с числом потоков, равным числу доступных ядер процессора * 2. ASGI в тесте не участвовал.
При использование Django админки часто может возникнуть необходимость подключить внешнюю библиотеку. Например если одно или несколько полей в вашей модели
В гостях у Moscow Python Podcast Фёдор Борщёв. Поговорили с Фёдором о текущем состоянии Django, асинхронности в нём и о его будущем.
В мире существует много явлений с сомнительной и спорной репутацией. Например, сюда можно отнести хоккей на траве, датскую квашеную селедку и мужские трусы-стринги. А еще к этому списку можно с абсолютной уверенностью добавить вирусы на Python.
Трудно сказать, что толкает людей на создание вредоносного ПО на этом языке программирования. Обилие выпускников “шестимесячных курсов Django-программистов” с пробелами в базовых технических познаниях? Желание нагадить ближнему без необходимости учить C/C++? Или благородное желание разобраться в технологиях виримейкерства путем создания небольших прототипов вирусов на удобном языке?
Данный пост является продолжением первой части статьи на Хабре, где было подробно рассказано о развертывании Django стека на MS Windows. Далее будет представлена пошаговая инструкция по созданию инсталлятора, который будет автоматизировать процесс установки стека на других компьютерах без необходимости работы в командной строке, созданием виртуальных машин и т.д., где вся последовательность действий будет сводится к действиям Далее -> Далее -> Готово.
Вы запускаете тесты командой manage.py test, но знаете ли вы, что происходит под капотом при этом? Как работает исполнитель тестов (test runner) и как он расставляет точки, E и F на экране?
Когда вы узнаете, как работает Django, то откроете для себя множество вариантов использования, таких как изменение файлов cookie, установка глобальных заголовков и логирование запросов. Аналогично, поняв то, как работают тесты, вы сможете кастомизировать процессы, чтобы, например, загружать тесты в другом порядке, настраивать параметры тестирования без отдельного файла или блокировать исходящие HTTP-запросы.
В статье - наработки по логированию запросов к приложению Django. С помощью небольшого количества кода Django/Python можно быстро и просто собрать различные характеристики запросов к приложению и провести их анализ.
Согласно всегда правдивой информации на Википедии, в мире насчитывается около 360 миллионов носителей английского языка. Мы, как разработчики, настолько привыкли писать код и документацию на английском языке, что не осознаем, что это число – это всего. 4,67% населения всего мира. Единый язык общения между разработчиками – это, конечно, хорошо, но это не значит, что пользователь должен чувствовать дискомфорт при использовании вашего продукта.
В этой статье мы начнем говорить о понятиях интернационализации и локализации, а также обозначим их важность для вашего приложения. Затем рассмотрим некоторые элементы интернационализации, доступные разработчикам для работы над проектами на Python и Django. Под конец расскажем о том, как мы изменяли свой процесс разработки, чтобы добавить интернационализацию.
Снова базы данных? В реляционной базе данных есть три основных отношения: Отношение «один-к-одному»; Отношение «один-ко-многим»; Отношение «многие-ко-многим». В этой статье мы будем разбираться с первым из них – отношением «один-к-одному».
Перевод: Python’s @classmethod and @staticmethod Explained
Для новичков, изучающих объектно-ориентированное программирование на Python, очень важно хорошо разбираться в таких понятиях как classmethod и staticmethod для написания более оптимизированного и повторно используемого кода.
Кроме того, даже опытные программисты, работающие на разных языках, часто путают эти два понятия.
Буду рассказывать о ложной дихотомии ORM и запросов в голом SQL. Расскажу, как Django с одной стороны и aiohttp+asyncpg с другой позволяли нам катиться как угорелые
Краткий обзор тайп-чекинга в питоне, mypy, pep484. Как я писал библиотеку django-stubs. С какими проблемами столкнулся в процессе. Что еще планируется сделать. DEP (Django Enhancement Proposal) по поводу добавления типов в core.