Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Как запускать приложение и сервис написанные на python под android при запуске устройства. Что бы это сделать придется разбираться как работает buildozer и pythonforandroid. Т.к. на текущий момент сделать это по человечески не представлялось возможным, из-за того что разработчики kivy не позаботились об этом.
Пора пополнять библиотеку программиста. Пытаетесь найти что-нибудь для начинающих о языке Python в интернете? Не можете решить, с чего начать? Как структурировать это море информации? В каком порядке изучать? Если вы задаетесь подобными вопросами, потому что хотите заложить фундамент будущей карьеры питониста — эта книга для вас! Вместо скучного перечисления возможностей языка авторы рассказывают, как сочетать разные структурные элементы Python, чтобы сразу создавать скрипты и приложения. Книга построена по принципу 80/20: большую часть полезной информации можно усвоить, изучив несколько критически важных концепций. Освоив самые популярные команды и приемы, вы сразу сосредоточитесь на решении реальных повседневных задач.
В Python имеется так много встроенных исключений, что программисты редко нуждаются в создании и использовании пользовательских исключений. Или это не так?
Сегодня поделюсь своим опытом реализации model based-подхода в написании python API автотестов на проекте «База заказов».
Проект представляет из себя приложение с микросервисной архитектурой для обработки, хранения, конфигурирации заказов, нотифицирования целевых систем и встроенным механизмом запуска процессов подключения услуг. Приложение является модулем общей системы и не имеет фронта как такового, только API интерфейс.
Этот небольшой путеводитель по возможностям языка Python меня сподвиг написать довольно существенный, на мой взгляд, разрыв между декларируемыми объемами всевозможных курсов программирования и требованиями реальных, даже достаточно скромнооплачиваеых вакансий, а также некоторая обобщенность подобных Python-путеводителей, найденных мной на просторах Сети. Особенно выбивают из равновесия советы изучить, скажем, «Алгоритмы и структуры данных» или «SQL».
С чего начать изучение нового языка? Чаще всего люди на раннем этапе используют стандартный лексико-грамматический метод с доминированием письменного языка, который показал себя медленным и весьма скучным — вам чаще всего нужна зашкаливающая мотивация, чтобы не бросить где-то посередине.
По умолчанию все Django-проекты доступны по адресу http://localhost:8000 или http://127.0.0.1:8000 что одно и тоже. Эта адреса твоего локального компьютера. Соответственно никто другой в Интернете, перейдя по одному из этих адресов, ваш сайт не увидит. Проект пока рано заливать на какой-то хостинг или выделенный сервер, но показать его другому человеку уже нужно: похвастаться другу, человеку и команды разработки, заказчику и т.д. Даже если этот человек подключится к WI-FI у вас дома и будет находиться с сайтом в одной сети, localhost будет перенаправлять гостя на своё же устройство, а не на ваш сайт. Что делать, как показать Django-проект, которые запускается на локальном сервере, недоступном в Интернете?
Многие знакомы с алгоритмами дерева отрезков и корневой декомпозицией. Однако, не многие задаются вопросом о том, почему они устроены именно так, как они устроенны, и нельзя ли немного изменив их получить выигрыш во времени работы или памяти. Одно из таких изменений я бы и хотел рассмотреть в этой статье.
Когда мы расставляем мебель в комнате, мы ориентируемся на габаритные размеры мебели и фурнитуры, а не на их занимаемую площадь, и мебель часто квадратной формы. С полигонами на карте дело обстоит немного иначе, они могут быть произвольной формы, но должны иметь определенную площадь, а задача такая же как и с мебелью - уместить всё в комнату (участок). Когда полигоны квадратные, то рассчитать нужное изменение длины ребра для получение желаемой площади, не так и сложно. С полигонами сложной формы всё не так просто, но и это тоже не проблема, ведь можно методом тыка подобрать нужную площадь. Проблема возникает когда количество полигонов возрастает. Пример: на изменение полигона сложной формы уходит 5 минут (грубо говоря), но нам нужно изменить 15 полигонов, считаем и получаем 75 минут. За 75 минут можно сделать гору полезных дел, а всего было отредактировано 15 полигонов. Если полигоны придется менять заново? вдруг нужно их будет разбить на другую площадь? Вот была бы такая программа, которая сама бы изменяла полигон и добавляла бы нужную площадь.
На мастер-классе вы будете первыми, кто воспользуется нашей oпенсорсной генеративной моделью. Обсудим, что такое языковая модель и как ее использовать для conversational AI. И на практике: Поборемся с основной проблемой языковых моделей, обученных на корпусе из Интернета — генерация токсичных ответов. Повысим качество ответов болталки с помощью классификаторов. Улучшим качество с помощью промт-тюнинга. Найдем топовый алгоритм декодирования (чтобы ответы были длинные и кайфовые). И в конце обернем нашу модель в сервис и телеграм бота. Так у каждого участника МК останется бот, с которым он сможет поболтать в любой момент. Мастер-класс рассчитан на ML инженеров, которые смогут разобраться с технологиями NLP.
Доклад про выбор компонентов решения MLOps и первые шаги внедрения. Рассчитан на архитекторов, тимлидов и датасаентистов, вовлеченных в построение инфраструктуры для работы моделей машинного обучения. Слушатели смогут понять, зачем нужен MLOps и зачем заниматься его внедрением, узнают, каков был наш путь по выбору компонентов решения и как мы их внедряем.
Летом 2021 Яндекс Погода представила новую модель машинного обучения для прогнозирования дождя — Meteum 2.0. Впервые в истории она опирается не только на данные специализированных приборов наблюдения за погодой, но и на сообщения пользователей об осадках. До Яндекса никто в мире так не делал. Я расскажу, какие данные Яндекс Погода использует для создания карты осадков, как с помощью python и машинного обучения улучшить качество классических методов прогноза. Подробно опишу этапы обучения модели и то, с какими трудностями пришлось при этом столкнуться.
Как подружить OpenAPI и JSON:API. Почему мы решили использовать JSON:API в нашем FastAPI приложении, и какие задачи решает данная спецификация. Для чего применять Compound Documents (included ресурсы). Почему мы не захотели использовать Django с DRF и расширение для JSON:API, а выбрали именно FastAPI. Доклад рассчитан на разработчиков, имеющих опыт с веб-приложениями на Python, а также тех, кто работает с REST API. Слушатели познакомятся со спецификацией JSON:API, узнают, как и зачем её применять, научатся применять готовые решения для быстрого создания ресурсов с поддержкой JSON:API.
В докладе рассматривается текущее состояние PyPI: от статистики по пакетам и отдельным характеристикам хранимых артефактов, до трактовки тенденций в python-сообществе на сегодня. Нельзя обойти стороной и (как никогда!) актуальный вопрос безопасности компонентной базы и цепочки поставки в целом, поговорим про: typosquatting, dependency confusion и malware в пакетах и средствах предотвращения угрозы. Доклад рассчитан на dev, devops, devsecops, (+pm?) Слушатели: -узнают, что происходит с пайтон пакетами сегодня, интересные статистики и картиночки -получат понимание инфраструктуры пакетного индекса и сообщества, его окружающего -подкуются в базовых принципах безопасной разработки (devsecops)
В докладе поговорим о том, как использование стандартных возможностей уже готовых инструментов делает проект проще, как избавиться от лишних зависимостей и не потерять, а иногда и приобрести в функционале. Рассмотрим, как маршрутизация на кролике дает то, что не всегда может дать сторонний инструмент. Заглянем в то, как правильно заданный вопрос "почему и зачем" уменьшает количество проблем на проде. И конечно обсудим, на какие грабли мы наступили сами и какие встретятся, если выкинуть внешние зависимости.
Данные — это актив, они имеют реальную ценность, необходимо уметь ими управлять и защищать их. Мы в Тинькофф строим свою систему типа Data Catalog. Эта система собирает в себе все метаданные о таблицах, отчетах и бог знает чём еще в рамках предприятия и предоставляет инструменты для простого управления метаданными и самостоятельного поиска по ним. Я расскажу о том, как мы наполняем наш Data Catalog метаданными из более чем 25 источников, используя Apache Airflow. Как мы придумали подход, а затем и создали небольшой фреймворк.
В современном мире уже никого не удивить машинным обучением. Наиболее важно обеспечивать высокое качество и надежность моделей и, как следствие, бурно развиваются MLOps инструменты, которые позволяют управлять всем жизненным циклом машинного обучения. Мы в Яндексе, конечно, тоже делаем такой инструмент для внутренних пользователей. Один из его элементов — инструмент для пообъектного сравнения, позволяющий понять на каких объектах разные модели ведут себя лучше, а на каких хуже. Проблема заключается в том, что общий объем данных для сравнения может быть довольно большим. Кроме того, необходимо предоставить пользователю удобные средства сортировки и фильтрации для анализа полученного сравнения. В своем докладе я расскажу, как мы такой инструмент строили, развивали, и к чему в итоге пришли. Доклад будет интересен Data инженерам, разработчикам ETL процессов, специалистам по качеству и анализу данных.
Графы знаний активно применяются для улучшения пользовательских рекомендаций (амазон, нетфликс), для анализа фондового рынка (goldman sachs), поиска (яндекс, гугл) и даже для поиска новых молекул. Также это может быть удобным корпоративным инструментом, который объединяет и связывает данные внутри компании из разных источников. Это помогает исследователям, аналитикам и дата саентистам.
В докладе расскажем о том, как мы разрабатывали инструмент для запуска разнородных тестов на разнородном железе. Доклад рассчитан на разработчиков, тестировщиков, билд-инженеров и менеджеров, которые: планируют построить систему CI/CD, включающую прогон тестов на железе и эмуляторах; хотят иметь единый подход к запуску тестов; хотят, чтобы в их проектах была трассируемость результатов выполнения тестов в требования; имеют большой зоопарк разнородного железа, на котором нужно прогонять тесты.
Поговорим про мониторинг ML-моделей в production: о том, зачем и как это делать, что такое data drift и как его измерить. Также расскажу о том, почему выбор "правильной" метрики для data drift — одно из главных решений в мониторинге, и поделюсь результатами исследования пяти популярных статтестов, которое мы недавно провели в Evidently. На примерах покажу, как ведут себя разные метрики в зависимости от объема данных и размера data drift. Слушатели смогут сформировать интуицию о том, как ведут себя различные статтесты для определения data drift, и подобрать подходящую метрику под свою задачу и "сценарий" использования.