Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В последние годы наблюдается огромный прогресс в серии YOLO, в настоящее время в ней используются как модели обнаружения объектов без привязки, так и модели обнаружения объектов на основе привязки. Вместо того, чтобы сосредоточиться исключительно на архитектурных изменениях, YoloR выбирает новый маршрут. Он черпает вдохновение в том, как люди сочетают неявные знания с явными знаниями для решения новых задач.
В современном мире технологии синтеза речи и клонирования голоса стремительно развиваются и уже достигли впечатляющих результатов. С 2015 года проводится специальное соревнование ASV Spoofing, на котором ежегодно презентуют новые методы проведения спуфинг-атак (атаки, когда один человек или программа маскируется под другую путем фальсификации данных) с помощью видео-дипфейков и синтеза речи. Существующие речевые системы способны синтезировать речь и тембр голоса, на слух неотличимые от настоящих. Технологии клонирования голоса привлекают всё большее внимание и находят широкое применение в таких сферах, как голосовое управление, робототехника, голосовые ассистенты (например, Siri и Алиса) и т.д. Однако вместе с этим открываются новые возможности для мошенничества. Особенно уязвимы системы, использующие голосовую биометрию для идентификации пользователей: используя синтез речи, мошенники могут получить доступ к аккаунтам и данным пользователей.
Именно в Точке я впервые столкнулся с микросервисами и конкурентной средой. Разумеется, у меня не получилось сразу усвоить все боевые нюансы работы в новых условиях. С тех пор я прошёл непростой путь. У меня возникла идея написать свой цикл статей. Мы разберемся, как у наших сервисов получается не запутаться в непрерывном потоке информации — как получаемой от клиентов, так и передаваемой между собой. В этой статье я широкими мазками опишу, как рядовой разработчик видит инфраструктуру Точки, с какими проблемами мы регулярно сталкиваемся и почему нам так важна консистентность данных Читать далее
Относительно недавно команда Telegram выпустила обновление, с которым появилась возможность встраивать в мессенджер веб-приложения. Эта статья — обзор основных моментов внедрения веб-приложениий в телеграм-ботов.
Сегодня поговорим о том, что такое корректность статистических критериев в контексте А/Б тестирования. Узнаем, как проверить, является критерий корректным или нет. Разберём пример, в котором тест Стьюдента не работает.
В процессе очистки и подготовки данных нам часто приходится делать такие простые операции, как удаление столбцов и пр. Зачем для этого каждый раз писать пользовательский код? sklearn предоставляет механизм стандартизации таких преобразований для любых данных и поможет нам создать унифицированный конвейер из нужных действий.
Использование моделей глубокого обучения для решения задачи семантической сегментации (задачи присвоения метки принадлежности к некоторому классу для каждого из пикселей изображения) стало широко используемой практикой в различных областях: в медицине для анализа рентгеновских снимков и данных компьютерной томографии [1], в анализе видео с видеорегистраторов [2], управлении роботизированными манипуляторами [3]. Развивающейся является тематика использования моделей глубокого обучения для сегментации спутниковых данных [4].
Многие уже слышали, а может и пробовали модель Stable Diffusion для генерации картинок из текста. Но знаете ли вы, как с помощью той же модели можно генерировать аудио?
У меня есть небольшое хобби - я экспериментирую с машинным обучением применительно к торговле на бирже, в частности, с криптовалютами. После различных наколенных экспериментов я захотел создать удобный инструмент - базу торговых котировок. В процессе работы необходима быстрая загрузка достаточно большого количества данных. Это необходимо для расчетов, генерации данных для обучения, бэк-тестинга и других задач. Количество записей, которые нужно загрузить в питон довольно велико - речь может идти о миллионах и более записей.
Когда мы разрабатываем приложение, которое разделено на независимые автономные компоненты, мы говорим о микросервисной архитектуре. Для взаимодействия компонентов используется API. Самый популярным API является REST. Это обусловлено его гибкостью, эффективностью (в большинстве сценариев) и тем, что он легко масштабируется.
Разберёмся что “под капотом” формата EPUB и как перевести текст, но не переводить код в книге. Познакомимся с библиотекой Ebook Lib, а также узнаем для чего нам понадобиться библиотека Beautiful Soup.
В этом материале вы узнаете, как создать Telegram-канал, который будет сам обновляться, получая данные из открытых источников. Используем Python, AWS Lambda, DynamoDB и BeautifulSoup.
Для веб-автоматизации/тестирования Selenium всегда был стандартом де-факто. С ним легко начать работу, и он поддерживает практически все языки программирования.
Сегодня мы расскажем вам, как дообучить новую state-of-the-art модель SVTR-Tiny для распознавания текста сцены (текста в реальных уличных условиях) на собственноручно сгенерированных изображениях с помощью API библиотеки PaddleOCR.
Максим Дубакин рассказал о рабочем проекте собственного производства, который заавтоматизировал повторяющиеся задачи по переводу с деплоя bash-скриптами на helmfile при помощи Python и уменьшил затраты времени на ~ 2 часа.
С 1 по 7 ноября проходила квалификация Yandex Cup 2022. В секции Алгоритм: Марафон организаторы предложили интересную задачу программирования в ограничениях, обобщения известной задачи коммивояжёра, задачу поиска маршрута (vehicle routing problem). В статье расскажу о своем решении на основе Google OR-tools.
Даже на русском языке игра не самая простая Все началось с коллеги, который закинул в локальный чат сообщение, что он сыграл в игру #59 и угадал слово с 33 попыток и одной подсказки. Игра оказалась простая и сложная одновременно: сайт загадал слово и нужно его отгадать. В поле ввода отправляешь слово, а искусственный интеллект на сайте определяет, насколько отправленное слово близко по смыслу к загаданному. Интересная игра, тренирующая ассоциативное мышление и умение строить связи. Новое слово появляется каждый день, что в некотором смысле выглядит ограничителем. Также игра доступна только на португальском и английском языках. С одной стороны, это дополнительная практика, а с другой — сомнения «а знаю ли я это слово?» смазывают впечатления от игры. Так я задумался о локализации игры на русский язык.
Вдохновившись постом Building A Virtual Machine inside ChatGPT , я решил попробовать что-то подобное, но на этот раз вместо инструмента командной строки Linux давайте попробуем превратить ChatGPT в интерпретатор Python!
Возможно, ты сейчас готовишься к собеседованию в какую-нибудь IT-компанию. Скорее всего, тебе будут задавать технические вопросы, поэтому тебе приходится готовиться. Но, возможно, ты всё равно не сможешь ответить на все вопросы правильно. Как быть?! А слышал ли ты про новую умную chatGPT? А что, если я тебе скажу, что больше готовиться к собеседованиям так усердно не нужно! Что?! Задаваемые тебе вопросы можно делегировать chatGPT. В общем, нет времени объяснять, давай устроим собес для chatGPT по Data Science и узнаем, сможет ли сетка его пройти?! Всё по классике — спрашиваем вопросы по 4 секциям: программирование — Python и алгоритмы, написание SQL-запросов, Data Science и статистика, ML System Design