Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Разработчики любят спорить о языках программирования и инструментах. Если опустить типичные претензии, обычно все сводится к тому, что люди просто защищают свой выбор. Это проявление тенденции оправдывать и защищать свои инвестиции - время потраченное на изучение используемых языка и инструментов. И в этом есть смысл. Но не всегда это поведение является рациональным.
В этом посте я расскажу о некоторых уловках, которыми я воспользовалась, чтобы уменьшить двоичные файлы С/С++/Python с помощью ассемблера для x86. Здесь всё крутится вокруг кодовой базы Cosmopolitan. Дело в том, что из недавнего отзыва по проекту ELKS я узнала, что мой код там всем понравился и они хотят узнать больше о том, что трюки cosmo могут дать проектам вроде «Linux-порта i8086». Я почувствовала, что мы с ребятами проекта ELKS «одной крови», ведь первое, что я написала при создании Cosmopolitan, — это загрузчик i8086, который назывался Actually Portable Executable. А ещё мне было приятно узнать, что людям, которые погрузились в эту проблему гораздо раньше меня, нравятся мои наработки в Cosmopolitan. И тогда я решила, что неплохо было бы поделиться ими с более широкой аудиторией.
Цены уползли вверх и теперь я не могу позволить легкомысленно утопить аппаратуру катера. Как я рассуждал раньше: "Ну что там Raspberry Pi и несколько датчиков. Всегда можно взять новую "малинку", восстановить образ из бэкапа и продолжить испытания."
Сейчас же ситуация обратная. Если потеряю катер со всей электроникой, то дальше решать задачу, скорее всего, смогу только теоретически, на листочке в клеточку.
Поэтому, я спроектировал и распечатал на 3d принтере новый герметичный корпус с аккумуляторным отсеком.
На прошлом уроке мы углубились в изучение контуров. В частности, научились работать со структурой, которую возвращает функция выделения контуров, научились аппроксимировать и обходить контур, научились программировать кое-какие геометрические операции, чтобы создать инвариантное описание объекта. Напомню, как это мы сделали: нашли контур объекта, аппроксимировали его, обошли этот контур, вычислили косинусы углов между гранями аппроксимированного контура.
Celery на самом деле полна подводных камней. Отчасти потому, что внутри происходит работа с параллельными процессами, потоками ... и большую часть времени такие детали скрываются. Зачастую разработчику не нужно думать о них, и, следовательно, контакта со всем этим почти нет. И отчасти поэтому, для разработчика Celery иногда ведет себя самым неожиданным образом. Поэтому в нашем случае чтение документации все-таки необходимо.
Механизм unittest.TestCase.subTest появился в Python 3.4, это был простой инструмент для параметризации тестов. Изначальную дискуссию, посвящённую ему, можно почитать в трекере проблем Python, в ветке bpo-16997. Там, в основном, речь идёт о деталях реализации, но там можно найти и интересные рассуждения
Набор данных Financial News Sentiment Dataset (FiNeS) содержит в себе заголовки финансовых новостей о компаниях, торгующихся на Московской и СПб биржах. Целевой переменной датасета является оценка тональности новостных заголовков в виде вещественного числа. Идеи для использования датасета: Создание трейдинговых стратегий на основе анализа тональности новостей "на лету"; Анализ новостного фона в разрезе времени (день/неделя) или в разрезе компании.
Вы провели опрос клиентского опыта в вашей компании. В данном случае на каждый вопрос клиенты отвечали по 10 бальной шкале, где 1 - совсем неудовлетворен, а 10 - полностью удовлетворен. Вопросы разбиты на несколько тематических блоков.
Привет, Хабр! На связи снова Юрий Кацер, эксперт по ML и анализу данных в промышленности, а также руководитель направления предиктивной аналитики в компании «Цифрум» Госкорпорации “Росатом”. До сих пор рамках рабочих обязанностей решаю задачи поиска аномалий, прогнозирования, определения остаточного ресурса и другие задачи машинного обучения в промышленности. В рамках рабочих задач мне приходится часто сталкиваться с проблемой правильной оценки качества решения задачи, и, в частности, выбора правильной data science метрики в задачах обнаружения аномалий.
При разработке чат-ботов и голосовых ассистентов часто возникает задача нахождения семантического сходства слов. Причина тому – наличие в языке большого количества схожих по смыслу слов и выражений.
Как создать приложение с открытым кодом для планирования пеших походов и выбора оптимального маршрута? Любой заядлый турист знает: всё, что ждёт его в походе, зависит от подготовки.
Для торгового автомата, описанного в статье, потребовалась программа с интерфейсом оператора - несколько диалоговых окон. Смесь справочника с обучающими видео, меню выбора текущего видео и прочих настроек.
Сегодня я хочу попробовать что-то новое и начну исследовать мир Python. В этой статье представлен пошаговый туториал по реализации простого REST API при помощи Python, Fast API, Hydra и Mamba.
Данная статья будет полезна тем, чья деятельность связана с Data Engineering, и тем, кто только знакомится с этой славной профессией. Вы узнаете про особенности настройки и интеграции Kafka со Structured Streaming, а также увидите различные способы чтения данных, работы с водяными метками и скользящим окном.
Эта статья вдохновлена моим обучением. Когда я только начинал свой Python-way, на одном из форумов увидел новое для себя понятие - слоты. Но сколько я не искал, в сети было крайне мало статей на эту тему, поэтому понять и осознать слоты было достаточно сложно. Данная статья призвана помочь начинающим в этой теме, но даже опытные разработчики, уверен, найдут здесь нечто новое.
На Хабре уже описывали историю создания Python. Но мы решили не просто пересказать события ещё раз, а увидеть их глазами Гвидо ван Россума: что он сам думал обо всём происходящем? Поэтому нашли и перевели ранние высказывания, которые помогают лучше понять, почему Python стал именно таким и что определило его популярность.
В какой-то момент времени я превратился в педанта брюзгу. В фильмах малейшие нестыковки и провалы в логике портят мне весь просмотр. В чатах меня бесит it's вместо its. А в статьях про программирование... Всё плохо. За меня всё уже сказал @AlexanderAstafiev, я лишь процитирую:Простите, я не могу так больше. Я слишком хорошо знаю Python, чтобы молчать при виде такого кода. Я устал. Я не могу это читать. Простите за токсичную критику, накипело.Самое забавное, что, по моим ощущениям, везде я вижу одни и те же классы проблем. Я даже запилил сервис, где можно закинуть код и получить код ревью, и, собрав немного статистики, понял, что 50 типов ошибок достаточно, чтобы покрыть большую часть проблем в чужом коде. Но выборка у меня была небольшая, и я подумал: а что, если проверить много кода? И всё заверте...
У всех разработчиков со временем нарабатывается опыт, растёт экспертиза. Когда вы много лет занимаетесь разработкой, приходит понимание каких-то общих концепций, вырабатываются правила поведения в конкретных сценариях.
В этой небольшой статье я хочу рассказать про свои Best Practices, которые я применяю и всегда советую другим. Сверху будут наиболее общие замечания, но чем ниже по статье вы будете продвигаться, тем больше будет реальных проблем и советов (с кодом и т. п.).
Начиная знакомиться с Web3, было сложно найти в одном месте понятные примеры базовых операций на Web3Py. Например: просмотр баланса, отправка транзакций, минтинг NFT, взаимодействие с контрактами и тд. В этой статье я попытался собрать примеры, которые покрывают > 90% потребностей для разработки бэкенда для web3 приложений. Кстати, все примеры будут применимы и для Web3.js с поправкой на название методов и синтаксис.
Возникла ситуация, когда необходимо выводить звук-предупреждение о разряде ибп raspberry pi.
В статье предлагается решение с использованием датчика напряжения (Voltage Sensor), arduino nano и «любимой аудио колонки школьника» — портативной «jbl go».