Собрали в одном месте самые важные ссылки
читайте нас в Telegram
В повседневной практике мне постоянно приходится анализировать взаимодействие различных сетевых элементов, которые участвуют в предоставлении той или иной услуги абонентам.
Для оценки качества услуги обычно используются отчёты об ошибках, которые формируются на основе сообщений об ошибках от различных сетевых элементов. Анализ достоверности отчётов об ошибках — важный этап оценки качества услуги. В этой статье рассмотрим, как различные статистические методы могут применяться в инженерной практике при оценке достоверности отчётов об ошибках.
Наверняка вы читали мой пост про введение в Apache Airflow. Многое с тех пор изменилось в инструменте, в декабре 2020 года вышла новая версия Apache Airflow 2.0. В ней появилось множество интересных фишечек:
Те, кто работает с Python, знают, что этот язык хорош благодаря своей обширной экосистеме. Можно даже сказать, что язык программирования не выделялся бы ничем особенным, если бы не его замечательные пакеты, которые добавляют новые функции к основным.
Сегодня хочу рассказать про Apache Airflow, который, на мой взгляд, является хорошим инструментом для построения ваших пайплайнов.
Что связывает языки Python и C++? Как извлечь из этого выгоду лично для себя? На большой конференции Pytup Александр Букин показал способы, благодаря которым можно оптимизировать свой код, а также выбирать и эффективно использовать сторонние библиотеки.
Представьте, что у вас есть свой канал в Телеге. Допустим, вы высказываете непопулярную политическую точку зрения и, соответственно, ловите хейт в личку со стороны читателей и проходящих мимо.
Очень часто приходится сталкиваться с проектами в которых DRF Serializer используется только для вывода данных. А для ввода данных и их верификации используются какие то отдельные функции. Что как мне кажется совершенно неправильно. Если в проекте используется DRF Serializer то именно он и должен быть задействован для ввода и для вывода.
Прогноз кликабельности (CTR), цель которого - предсказать вероятность того, что пользователь нажмет на объявление или товар, имеет решающее значение для многих онлайн-приложений, таких как онлайн-реклама и консультирующие (рекомендательные) системы. Эта проблема очень сложна, поскольку: 1) входные функции (например, идентификатор пользователя, возраст пользователя, идентификатор элемента, категория элемента) обычно разрежены; 2) эффективное предсказание опирается на комбинаторные функции высокого порядка (они же кросс-функции), которые очень трудоемки для ручной обработки экспертами предметной области и не перечислимы. Поэтому были предприняты усилия по поиску низкоразмерных представлений разреженных и высокоразмерных необработанных объектов и их значимых комбинаций.
Как обычно проходит собеседования на позицию разработчика Python? Обычно одним из первых вопросов будет просьба рассказать о типа данных (или составных типах данных) в Python. Потом через несколько других общих вопросов разговор обязательно перейдет к теме дескрипторови метаклассов в Python. И хотя это такие вещи которые в реальной практике редко когда приходится использовать, каждый разработчик должен иметь хотя бы общее представление о них. Поэтому в этой статье я хочу немного рассказать о метаклассах.
Можете представить себе классификатор изображений, который решает практически любую задачу, и который вообще не нужно обучать? Представили? Выходит, что это должен быть универсальный классификатор? Все верно! Это новая нейросеть CLIP от OpenAI. Разбор CLIP из рубрики: Разбираем и Собираем Нейронные Сети на примере Звездных Войн!
Предполагаемая природа типа «черный ящик» нейронных сетей является препятствием для использования в приложениях, где важна интерпретируемость. Здесь мы представляем DeepLIFT (Deep Learning Important FeaTures), метод декомпозиции выходного предсказания нейронной сети на конкретном входе путем обратного распространения откликов всех нейронов (узлов) сети на каждый признак входного сигнала. DeepLIFT сравнивает активацию каждого нейрона с его «эталонной активацией» и присваивает оценки его отдельного вклада. При необходимости раздельно рассматривая положительные и отрицательные вклады, DeepLIFT может также выявить зависимости, которые упускаются другими подходами. Баллы могут быть эффективно вычислены за один обратный проход. Мы применяем DeepLIFT к моделям, обученным на MNIST и смоделированных геномных данных, показывая значительные преимущества перед градиентными методами.
В современном мире услуги доставки становятся всё более популярными и востребованными, поэтому любая возможность автоматизации в этой сфере принесёт большую пользу как бизнесу, так и пользователям. В прошлых статьях нашего блога мы рассказывали о применении машинного зрения и нейронных сетей для распознавания ценников товаров в магазине, а также для распознавания комплектующих деталей. В этой статье мы расскажем о менее амбициозной (но не менее интересной) задаче – автоматизации оповещения клиентов о статусе их заказов с использованием чат-бота в Telegram, QR-кодов и реляционной СУБД SAP SQL Anywhere.