Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Если у вас появилась потребность добавить React в Wagtail CMS, да еще и с использованием GraphQL, то это руководство должно помочь вам в этом.
Недавно я решил познакомиться с API крупнейшей социальной сети Европы — ВКонтакте. В разделе «Для разработчиков» содержится довольно подробная документация, а в интернете существует немалое количество статей, помогающих освоиться с VK API, поэтому я решил, что серьезных проблем в изучении быть не должно. Однако, когда я добрался до LongPoll сервера, обнаружилось, что статей по работе с ним практически нет, а официальная документация не настолько полна, чтобы полностью понять изучаемый материал. Пришлось методом проб и ошибок пытаться понять принцип работы LongPoll-а, что через некоторое время мне сделать все-таки удалось. Я решил поделиться изученным материалом с другими людьми, чтобы сократить их время изучения нового. Ниже вы можете ознакомиться с разделами, про которые мне удалось написать.
Необходимость решения транспортных задач в связи с территориальной разобщённостью поставщиков и потребителей очевидна. Однако, когда необходимо решить транспортную задачу без дополнительных условий это как правило не является проблемой поскольку такие решения достаточно хорошо обеспечены как теоретически, так и программными средствами.
Основы Django. С помощью каких частей Django можно собрать простое приложение
Эта статья представляет собой адаптацию разделов 2 и 3 из главы 9 моей книги «Глубинное обучение с Python» (Manning Publications).
Visual Studio Code (далее — VS Code) – сравнительно молодой редактор кода (первый выпуск – весна 2015 г.) с открытым исходным кодом, распространяемый бесплатно и способный составить реальную конкуренцию таким признанным лидерам отрасли как Sublime Text, Atom, Notepad++.
Ниже перечислены те особенности VS Code, которые меня заинтересовали и заставили попробовать в действии.
Сегодня мы дадим ответ на простой вопрос: "Как работает распределённое обучение (в контексте MXNet)?"
Все примеры кода протестированные на MXNet v0.10.0 и могут не работать (или работать по-другому) в других версиях, однако полагаю, что общие концепции будут неизменимы еще долго.
Requests хорошо, но grequests лучше. Я не знаю лучше, эффективней библиотеку, которая умеет быстро и элегантно выполнять HTTP-запросы нежели requests, данная библиотека — несомненный лидер, в данном плане.
Небольшой туториал, как сделать простого слэк-бота на Python, развернуть его на Heroku, подключить Travis CI за двадцать минут и начать делать что-то полезное.
Недавно начал свое знакомство с библиотекой глубокого обучения (Deep Learning) от Google под названием TensorFlow. И захотелось в качестве эксперимента написать карту самоорганизации Кохонена. Поэтому решил заняться ее созданием используя стандартный функционал данной библиотеки. В статье описано что из себя представляет карта самоорганизации Кохонена и алгоритм ее обучения. А также приведен пример ее реализации и что из этого всего вышло.
Я продолжаю подробно рассказывать о приемах оптимизации, позволивших мне написать самый быстрый ресайз изображений на современных x86 процессорах. На этот раз речь пойдет о преобразовании вычислений с плавающей точкой в вычисления с целыми числами. Сперва я расскажу немного теории, как это работает. Затем вернусь к реальному коду, в том числе SIMD-версии.
Процесс разработки образовательной программы очень похож на процесс разработки нового продукта. И там, и там ты пытаешься вначале понять, а есть ли спрос на то, что ты собираешься производить? Существует ли в реальности та проблема, которую ты хочешь решить?