Собрали в одном месте самые важные ссылки
читайте нас в Twitter
В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.
В данной статье разобран принцип работы метода машинного обучения«Обучение с подкреплением» на примере физической системы. Алгоритм поиска оптимальной стратегии реализован в коде на Python с помощью метода «Q-Learning».
Обучение с подкреплением — это метод машинного обучения, при котором происходит обучение модели, которая не имеет сведений о системе, но имеет возможность производить какие-либо действия в ней. Действия переводят систему в новое состояние и модель получает от системы некоторое вознаграждение. Рассмотрим работу метода на примере, показанном в видео. В описании к видео находится код для Arduino, который реализуем на Python.
В этой статье хочу рассказать, как мы решили не типовую задачу на FreePBX. Под определением «не типовую» я имею в виду, что ее нельзя решить стандартными средствами, без дополнительных инструментов.
Статья описывает как реализовать свой способ загрузки модулей
В большинстве популярных языков программирования и экосистем с зависимостями все плохо. Как правило, создатели нового языка программирования уделяют этому не очень много внимания: просто потому, что в новом языке еще нет сотен тысяч библиотек для разных архитектур и версий, нетривиальным образом зависящих друг от друга. А когда эти сотни тысяч библиотек появляются – уже поздно что-нибудь менять.
Привет, Хаброжители! Наконец-то у нас вышла книга Билла Любановича:
Эта книга идеально подходит как для начинающих программистов, так и для тех, кто только собирается осваивать Python, но уже имеет опыт программирования на других языках. В ней подробно рассматриваются самые современные пакеты и библиотеки Python.
Стилистически издание напоминает руководство с вкраплениями кода, подробно объясняя различные концепции Python 3. Под обложкой вы найдете обширный материал от самых основ языка до сравнительно сложных и узких тем.