Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Когда пришло приглашение поучаствовать в хакатоне с заданием, для реализации которого необходима оригинальная/ смешная/ креативная гипотеза, мы сразу согласились.
Для участия в хакатоне мы использовали данные шуточного психологического теста.
Суть которого сводится к выявлению сексуальности игрока на подсознательном уровне.
Степень сексуальности выявлялась по описанному игроком образу воды.
Справедливое моделирование — это область искусственного интеллекта, которая гарантирует, что на результат машинного моделирования не влияют такие защищённые атрибуты, как пол, раса, религия, сексуальная ориентация и т. д. В последнее время справедливое моделирование привлекло значительное внимание в научном сообществе и промышленности, ведь сейчас многие решения принимаются на основе результатов от моделей машинного обучения.
В гостях у Moscow Python Podcast исполнительный директор компании СберДевайсы Алекс Редер. Поговорили о том, может ли Python в highload и что такое highload
Сегодня поделюсь с вами опытом разработки весьма интересного проекта, который мы создали и продолжаем развивать весь этот год — корпоративной ERP-системы.
Мне кажется, в каждом языке программирования есть моменты, которые требуют повышенной концентрации внимания или больше практики для своего понимания. Python в этом плане не исключение, и сегодня я расскажу вам о нескольких каверзных вопросах, с которыми вы можете столкнуться как в повседневной разработке, так и в ходе прохождения собеседования.
Статья о интеграции FastAPI и Dependency Injector. Пример использования и тестирования.
В этой статье мы рассмотрим некоторые алгоритмы рейт лимитов на основе Python и Redis, начиная с самой простой реализации и заканчивая продвинутым обобщённым алгоритмом контроля скорости передачи ячеек (Generic Cell Rate Algorithm, GCRA).
Для взаимодействия с Redis (pip install redis) мы будем пользоваться redis-py. Предлагаю клонировать мой репозиторий для экспериментирования с ограничениями запросов.
Интересно, сколько людей понимают, что в Python много синтаксического сахара? Я не говорю, что он похож на Lisp-подобные языки, где синтаксис настолько голый, насколько это возможно (хотя и сравнение с Lisp не совсем обосновано), но большая часть синтаксиса Python технически не нужна, поскольку под капотом в основном вызовы функций.
Продолжаем туториал по библиотеке opencv в python
Эта статья внеплановая. В прошлый раз я рассматривал нюансы и проблемы различных методов нормализации данных. И только после публикации понял, что не упомянул некоторые важные детали. Кому-то они покажутся очевидными, но, по-моему, лучше сказать об этом явно.
Мы рады объявить о релизе Delta Lake 0.4.0, в котором представлен Python API, улучшающий манипулирование и управление данными в Delta-таблицах.
В градиентном бустинге прогнозы делаются на основе ансамбля слабых обучающих алгоритмов. В отличие от случайного леса, который создает дерево решений для каждой выборки, в градиентном бустинге деревья создаются последовательно. Предыдущие деревья в модели не изменяются. Результаты предыдущего дерева используются для улучшения последующего. В этой статье мы подробнее познакомимся с библиотекой градиентного бустинга под названием CatBoost.
Не так давно я писал про волейбольный сервис, теперь пришло время описать его с технической точки зрения.
Возможно, общественное сознание найдет изъяны в архитектуре и подтолкнет к лучшим решениям.
Совсем недавно мы (команда разработчиков KivyMD) создали на GitHub KivyMD-Extension — организацию, в которой размещаются репозитории пользовательских дополнений для библиотеки KivyMD. Это пакеты компонентов, которые не связаны напрямую со спецификацией материального дизайна, но используют под капотом библиотеку KivyMD и существенно расширяют ее. О нескольких таких пакетах я расскажу сегодня.
Дерево решений — тип контролируемого машинного обучения, который в основном используется в задачах классификации. Дерево решений само по себе — это в основном жадное, нисходящее, рекурсивное разбиение. «Жадное», потому что на каждом шагу выбирается лучшее разбиение. «Сверху вниз» — потому что мы начинаем с корневого узла, который содержит все записи, а затем делается разбиение.
При создании дерева решений из данных алгоритм ID3 использует индекс, называемый информационной энтропией, чтобы определить, какой атрибут следует использовать для ветвления с наиболее эффективным распределением данных.
В начале, определимся с понятием объем информации. Интуитивно понятно, что объем данных = сложность, запутанность данных. Дерево решений собирает данные с одинаковыми значениями классов с каждого ветвления, таким образом снижая степень запутанности значений класса. Следовательно, при выборе атрибута, согласно которому лучше всего проводить ветвление, опираться стоит на то, насколько простыми стали данные после разветвления.
Интерес к теме машинного обучения и искусственного интеллекта неуклонно растет. Ежедневно в новостных сводках мы читаем про победу искусственного интеллекта над человеком. Как правило, описывается решение некоторой сложной задачи (челенджа). От жгучего желания воспроизвести результаты статьи во благо человечества (или своего собственного) в 99% случаев отговаривает отсутствие датасета, деталей реализации алгоритма и мощного железа (порой сотни единиц специализированных устройств для тензорных вычислений).