Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Меня зовут Алексей Казаков, я техлид команды «Клиентские коммуникации» в ДомКлик. В большинстве приложений, с которыми мне приходилось иметь дело, при взаимодействии с БД не ограничиваются лишь драйвером, который позволяет выполнять сырые запросы. Для удобства и избавления от SQL-запросов внутри, например, Python-кода дополнительно используют библиотеки (Object Relational Mapper, ORM).Это первая статья в серии, посвященной различным ORM. Начнём мы с DjangoORM.
PyTorch — современная библиотека машинного обучения с открытым исходным кодом, разработанная компанией Facebook. Как и другие популярные библиотеки, такие как TensorFlow и Keras, PyTorch позволяет использовать вычислительную мощность видеокарт, автоматически составлять граф вычислений, дифференцировать и считать его. Но, в отличие от предыдущих библиотек, обладает более гибким функционалом, благодаря тому, что использует динамический граф вычислений.
В этой статье мы рассмотрим несколько простых подходов прогнозирования временных рядов.
Это небольшой рассказ про то, как команда Центра компетенции больших данных и искусственного интеллекта в ЛАНИТ оптимизировала работу банкоматной сети. Упор в статье сделан не на описание подбора параметров и выбор лучшего алгоритма прогнозирования, а на рассмотрение концепции нашего подхода к решению поставленной задачи.
В гостях у Moscow Python Podcast СТО в компании SunLight Илья Мельницкий. Обсудили с Ильей что такое IT не в IT компании и какие плюсы у retail компании.
В этой статье мы изучим полиморфизм, разные типы полиморфизма и рассмотрим на примерах как мы можем реализовать полиморфизм в Python.
Проблема впечатывания данных в PDF документ не нова, не я первый и не я последний кто с ней сталкивается, поэтому решил поделиться опытом решения и заодно представить вашему вниманию небольшое веб приложение по этой теме.
По данным Комиссии по ядерному регулированию, в США находится 31 исследовательский ядерный реактор. У автора есть лицензия на эксплуатацию одного из них, и в этой статье он продемонстрирует, как применил методы машинного обучения и общего анализа данных для прогнозирования уровней мощности импульсов и повышения показателя воспроизводимости наших экспериментов.
Мое приложение на 100% serverless, и я всегда умещался в уровень бесплатного использования, так что просто игнорировал затраты. Но затем мне пришел счет на 62$.Под катом вы сможете найти подробную инструкцию для умного контроля расходов в облаке, до того как они превратятся в проблему.
OpenVINO toolkit (или Intel Distribution of OpenVINO Toolkit) - это открытый бесплатный набор инструментов, который помогает разработчикам и аналитикам данных ускорить разработку высокопроизводительных решений для использования в различных видеосистемах.
Этот комплексный набор инструментов поддерживает весь спектр решений для компьютерного зрения, оптимизирует развертывание глубокого обучения и обеспечивает простое исполнение на различных платформах Intel.
OpenVINO решает самые разнообразные задачи, включая детектирование лица, автоматическое распознавание объектов, текста и речи, обработку изображений и многое другое.
Недавно на HackerNews обсуждали видео и каналы, где можно пойчиться продвинутому программированию. Под катом — подборка из 30 полезняшек.
Мы еще в школе научились вызывать функцию print. Что может пойти не так в консольной разработке? Да, и если бы не растущая сложность программ, проблем бы у нас не было до сих пор. А в реальности — то в тексте трудно найти нужную информацию, то он не влезает в экран по ширине и по длине, а от многочисленности цветов рябит в глазах.
На данный момент доступны два класса схем модуляции:
M-PSK: Phase Shift Keying (фазовая цифровая модуляция)
M-QAM: Quadratured Amplitude Modulation (квадратурная амплитудная модуляция)
где M - это порядок модуляции.
Интересен модуль может быть, скорее всего, в разрезе образовательных целей в сфере беспроводной связи (подбор модуляций исходил именно из нее), однако, вдруг кому-то пригодится и для научных изысканий. Не MatLab'ом насущным едины!
Добро пожаловать в статью по распознаванию. Так как большую часть рабочего времени я провожу в офисном пространстве open space, где каждое место пронумеровано, решил рассказать вам о компьютерном зрении на примере обычной таблички с номером рабочего места. Здесь мы дообучим нейросеть детектировать выбранную нами табличку.
Недавно я попал на стажировку в новую для себя IT-компанию и наш (моей команды) проект был - бот для телеграмма, который автоматизирует часть работы hr-менеджеров. Первую неделю нам дали на самостоятельное изучение всего, что мы посчитаем нужным (а я убежден, что лучший способ что-то изучить - это практика), так что я начал действовать. Язык программирования был выбран python (наверное понятно из обложки почему), так что в этой статьи я разберу пример именно с ним.
Подход безусловно интересный и стоит взять его на вооружение. Но разве коэффициент сжатия zlib на качественных текстах не имеет нелинейной зависимости от длины сжимаемого текста? Давайте проверим.
Возьмем текстовый корпус, состоящий из предложений, длина которых варьируется в диапазоне от 50 до 280 символов
К задачам поиска лучшего варианта решения (объекта, параметров или других данных) сводятся многие из проблем математики, экономики, статистики и т.д. Эти проблемы возникают, когда приходится строить математическую модель ситуации. При обработке полученной математической модели не всегда является возможным перебрать все данные, предоставленные системой, поэтому возникает потребность в разработке таких алгоритмов, которые могли бы искать оптимальные данные с некоторыми погрешностями, чтобы ограничить зону обработки данных для поиска последующих лучших значений.
В данной статье под задачей оптимизации понимается нахождение экстремума (минимума) некоторой вещественной функции в заданной области. Будут рассмотрены два самых важных алгоритма в оптимизации: генетический алгоритм и алгоритм роя частиц.
Австрийский банк. У него много клиентов, у клиентов открыт счет в этом банке. В течении года клиент тратит средства со своего счета. Ходит в магазины, гасит коммунальные платежи и пр. Каждое списание денег со счета назовем транзакцией. Дана последовательность транзакций за определенное время (скажем год). Надо обучить машину, чтобы она начала проверять новые транзакции как достоверные или подозрительные. И выдавала предупреждение в последнем случае. Для решения задачи надо использовать Hidden Markov Model.
В наше время без анализа и обработки текстов, не обходится ни один проект, и так уж сложилось что Python обладает широким спектром библиотек и фреймворков для задач NLP. Задачи могут быть как тривиальные: анализ тональности(sentiment) текста, настроение, распознавание сущностей(NER) так и более интересные как боты, сравнение диалогов в саппорт-чатах - мониторить следует ли ваша тех.поддержка или сейлз текстовым скриптам, или постобработка текста после SpeechToText.
Липкие сессии (Sticky-session) — это особый вид балансировки нагрузки, при которой трафик поступает на один определенный сервер группы. Как правило, перед группой серверов находится балансировщик нагрузки (Nginx, HAProxy), который и устанавливает правила распределения трафика между доступными серверами.