Собрали в одном месте самые важные ссылки
читайте авторский блог
Во время своей недавней поездки в Сан-Франциско я встретился с выпускниками нашей программы «Специалист по большим данным», эмигрировавшими в США — Евгением Шапиро (Airbnb) и Игорем Любимовым (ToyUp), а также с Артемом Родичевым (Replika), нашим партнером. Ребята рассказали массу интересных вещей: зачем Airbnb выкладывает свои проекты в open-source; как устроена Replika — нейросетевой чат-бот, способный стать твоим другом; про миссию стартапов Кремниевой Долины и предпринимательскую экосистему.
Две недели назад закончился проходивший в офисе Mail.Ru Group хакатон для студентов SmartMailHack. На хакатоне предлагался выбор из трех задач; статья от победителей во второй задаче уже есть на хабре, я же хочу описать решение нашей команды, победившей в первой задаче. Все примеры кода будут на Python & Keras (популярный фреймворк для deep learning).
Вот бы, разрабатывая программу на одном языке, сразу получать исходники на других языках программирования… Я пишу на C# .NET, но в последнее время всё больше требуется интегрироваться с Java. Одно из решений — оформление web-сервисов для взаимодействия, но не то это, не то. Вроде и существуют конвертеры C# в Java, но эксперимент показал, что для реального проекта они (те, что удалось попробовать) не работают, хотя на «hello world» отрабатывают отлично. Переписать с нуля на Java весь проект нереально — он активно разрабатывается более 6 лет (Pullenti — обработка естественного языка), да и на C# он нужен. Пришлось мобилизоваться и в прошлом году написать этот конвертер, а в этом году и конвертер C# в Python.
В этой статье разберем опыт написания инструмента, который позволяет прилагая минимум усилий и времени автоматизировать большой спектр рутинных задач.
Понадобилось мне сделать бота для выполнения нескольких задач, требовательных к логике и скорости реакции. Лезть в API и ковырять бинарники программ не хотелось. Было решено пойти путём визуальной автоматизации. Нашел несколько ботов, но ни один из них так и не подошел под мои требования, оказавшись или слишком медленным, или скриптовая часть была сильно урезана или был недостаточный функционал для работы с визуальной составляющей. Так как у меня был успешный опыт использования визуального бота в прошлом (хоть и медленного и сильно урезанного в скриптовой части) – решил сделать свою реализацию.
Наука об эмоциях стала популярной не так давно, и в основном благодаря Полу Экману — американскому психологу, автору книги «Психология лжи» и консультанту популярного сериала «Обмани меня», который основан на материалах книги.
18 апреля у нас в офисе прошел первый митап, посвященный кросс-языковым решениям для разработки серверной части. «Винегрет», судя по нашим впечатлениям и отзывам гостей митапа, удался. Значит, будем продолжать практику объединения бэкендеров, чаще встречаться и обсуждать общие подходы и инструменты для разных языков. Ну а пока публикуем видео, слайды, отзывы и фото. Всё это — под катом.
Это двадцать вторая часть Мега-Учебника, в которой я расскажу вам, как создавать фоновые задания, которые работают независимо от веб-сервера.
Если хорошо поискать, можно обнаружить довольно много полезной, приличного качества, государственной информации. Но к сожалению, это все еще не: ЕГЭ и образование, погода, картография, данные о преступлениях… и ДТП.
Поэтому у меня как бы две жизни: в одной помогаю чиновникам открывать данные, которые просят люди или организации, а в другой — пишу парсеры, которые превращают общедоступные базы особо «упрямых» госорганов в открытые данные и учу этому других, в надежде, что таких проектов станет много, государство смирится с неизбежным и все выложит в удобном нам виде.
Эта статья станет первым мануалом в серии «как получать машиночитаемые данные с госсайтов». Итак, сегодня — про статистику ДТП, а раз государство нам ее не дает, мы научимся забирать ее самостоятельно. По традиции, код и данные — прилагаются.
Очередной раз хочется поделиться своим опытом и результатами экспериментов в области промышленной автоматизации.
В настоящий момент мы немного поменяли концепцию построения системы опроса устройств с использованием языка python.
Зимой 2012 года Netflix пережил длительный сбой, уйдя в отключку на семь часов из-за проблем с сервисом AWS Elastic Load Balancer в регионе US-East (Netflix работает на AWS — у нас нет собственных дата-центров. Всё ваше взаимодействие с Netflix происходит через AWS, кроме самого потокового видео. Как только вы нажмете Play, начинает загружаться видеопоток из нашей собственной сети CDN). Во время сбоя ни один пакет из региона US-East не доходил до наших серверов.
На прошедших выходных (20-22 апреля) в офисе Mail.ru Group прошел студенческий хакатон по машинному обучению. Хакатон объединил студентов разных ВУЗов, разных курсов и, что самое любопытное, разных направлений: от программистов до безопасников.
Это двадцать первая часть Мега-Учебника Flask, в которой я добавлю функцию личных сообщений, а также уведомления пользователей, которые появляются на панели навигации без необходимости обновления страницы.
Hypothesis пытается использовать приемлемые значения в умолчаниях для своего поведения, но иногда этого недостаточно, и вам требуется настроить его.
Рекуррентные слои были изобретены еще в 80х Джоном Хопфилдом. Они легли в основу разработанных им искусственных ассоциативных нейронных сетей (сетей Хопфилда). Сегодня рекуррентные сети получили большое распространение в задачах обработки последовательностей: естественных языков, речи, музыки, видеоряда и тд.
В рамках задачи по Hierarchy reinforcement learning я решил прогнозировать не одно действие агента, а несколько, используя для этого уже пред обученную сеть способную предсказать последовательность действий. В данной статье я покажу как реализовать “sequence to sequence” алгоритм для обучения этой самой сети а в последующей, постараюсь рассказать, как использовать ее в Q-learning обучении.
Python-разработчики, внимание: шестой российский PyCon пройдёт 22-23 июля в отеле «Cronwell Яхонты Таруса» в 95 км. от Москвы. Доклады будут идти в два потока, плюс мастер-классы, Lightning Talks и афтепати.
Представляем вам перевод статьи по ссылке и оригинальный докеризированный код. Данное решение позволяет попасть примерно в топ-100 на приватном лидерборде на втором этапе конкурса среди общего числа участников в районе нескольких тысяч, используя только одну модель на одном фолде без ансамблей и без дополнительного пост-процессинга. С учетом нестабильности целевой метрики на соревновании, я полагаю, что добавление нескольких описанных ниже фишек в принципе может также сильно улучшить и этот результат, если вы захотите использовать подобное решение для своих задач.
Не факт, что вам потребуется написать серьёзное приложение на Python. А вот быстро собрать работающий сервис, чтобы «продать» его заказчику, — почему нет? Python универсален, и опыт создания мобильного софта на этом языке может оказаться полезным. Владислав Шашков из Сбербанка рассказал о том, как строится разработка с помощью фреймворка kivy.