Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Есть отличный инструмент для обучения/отчётов/написания умных книг про код — Jupyter Notebook. Если отчёт или книга, например, пишутся на кириллице, а нужно быстро сделать из этого PDF с красивыми формулами и тире правильной длины, то сразу обнаруживается проблема: в стандартном шаблоне, который Jupyter использует для конвертации блокнотов в PDF через LaTeX, нет подключения нужных пакетов с нужными параметрами, поэтому LaTeX просто не компилируется и PDF не получить.
“Absolute statements are the root of all evil.
The key is balance. There are no answers, only questions.”
????
Когда говорят про оптимизацию в контектсте программного обеспечения, то при этом часто подразумевают оптимизацию производительности программиста и/или оптимизацию самого программного обеспечения.
Исходя из YAGNI принципа, Python позволяет программисту сосредоточиться на реализации ПО, избавив его от необходимости заботиться о низкоуровневых вещах таких как регионых памяти, в которых выделяются объекты, об её освобождении или о соглашениях о вызовах.
На обратную проблему в одной из его лекций о Haskell указал Саймон Джонс. У него был слайд, на котором была нарисована стрелка, закрашенная градиентом: в начале было написано “no types”, посередине — “Haskell”, в конце — “Coq”. При этом, когда он указал на Coq, он сказал такую фразу: “This stresses power over usability. Right?! You need a PhD here!”[1]. Несмотря на то, что это была шутка, мантара Python – одна из любимых программистами особенностей этого языка. И из моего опыта, это то, что позволяет выпускать готовый продукт несколько быстрее.
С версией Visual Studio 2015 Community компания Microsoft впервые предложила разработчикам совершенно бесплатно пользоваться полнофункциональной версией своего мощного инструмента для разработки. Напомню, что функционал Visual Studio 2015 Community почти полностью предоставляет функционал версии Professional, но имеет некоторые лицензионные ограничения по использованию в коммерческой разработке.
Visual Studio 2015 Community так же, как и остальные версии инструмента, расширяема, благодаря Visual Studio Marketplace и всем официальным обновлениям инструмента. То есть огромное, постоянно увеличивающееся количество функционала доступно разработчикам совершенно бесплатно. Это касается и инструментов для разработки на языке Python.
Поддержка Python станет доступна, если отметить соответствующий пункт при установке среды. Это касается и CPython, PyPy, IronPython, поддержки IntelliSense, интерактивной отладки, интеграции и других возможностей Visual Studio для Python
В прошлый раз мы подробно рассмотрели многообразие линейных моделей. Теперь перейдем от теории к практике и построим самую простую, но все же полезную модель, которую вы легко сможете адаптировать к своим задачам. Модель будет проиллюстрирована кодом на R и Python, причем сразу в трех ароматах: scikit-learn, statsmodels и Patsy.
18 марта, в пятницу, прошел на Moscow Python Meetup 33 в офисе Mail.Ru Group.
В этой статье я бы хотела рассказать о применении python-библиотеки Pandasql.
Многие люди, сталкивающиеся с задачами анализа данных, уже, скорее всего, знакомы с библиотекой Pandas. Pandas позволяет быстро и удобно работать с табличными данными: фильтровать, группировать, делать join над данными; строить сводные таблицы и даже рисовать графики (для простых визуализации достаточно функции plot(), а если хочется чего-то позаковыристее, то поможет библиотека matplotlib). На Хабре не раз рассказывали о применении этой библиотеки для работы с данными: раз, два, три.
Но по моему опыту далеко не все знают о библиотеке Pandasql, которая позволяет работать с Pandas DataFrames как с таблицами и обращаться к ним, используя язык SQL. В некоторых задачах проще выразить желаемое с помощью декларативного языка SQL, поэтому я считаю, что людям, работающим с данными, полезно знать о наличии такой функциональности. Если говорить о реальных задачах, то я использовала эту библиотеку для решения задачи join'a таблиц по нечетким условиям (необходимо было объединить записи о событиях из разных систем по примерно совпадающему времени, разрыв порядка 5 секунд).
Рассмотрим использование этой библиотеки на конкретных примерах.
Эта статья — краткий рассказ о том, как с помощью подручных средств (Firefox) и Python можно осуществить успешную интеграцию Telegram-бота и внешнего сервиса.
Материал будет интересен тем, кто наслышан о Telegram'ных ботах, но не знает, как к ним подступиться и какие задачи с их помощью можно решать. Предполагается знание Python.
С поддержкой asyncio и вдохновленный Scrapy.
Зачем еще один?
В первую очередь как инструмент для сбора данных, применяемый в моем хобби проекте, который не давил бы своей мощью, сложностью и наследием. И да, кто же будет сознательно начинать что-то новое на python2.x?
В итоге появилось идея сделать простой фреймворк для современной экосистемы python3.x, но такой же элегантный как Scrapy.
Вот и подоспело второе обещание - видео. Это первое видео, поэтому включите в себе максимального критика и расскажите о недостатках и достоинствах.
Краткое описание: "Коротко о..." - проект PyNSK направленный на запись цикла небольших видео (до 5 минут)для новичков. В этих видео будет рассказаны основные знания про конструкции языка, модули стандартной библиотеки и инструменты необходимые при разработке программ на Python
Было записано первое видео - о списках. Из видео новички смогут узнать основные знания о списках (list). Видео очень короткое и сжатое.
В нашем Django-приложении необходимо было разработать отчет (расчет) бонусов.
Отчет должен иметь вложенную структуру с подведением итогов по пользователям, подразделениям и по всей компании.
Однажды возникло два желания:
Мы соединили два желания и начали писать. Проект двигался не спешно, шаг за шагом, строчка за строчкой, вопрос за вопросом. И вот, мы готовы представить первую версию (о багах пишите в комментариях или в личку).
Tests.pynsk.ru - это платформа для тестирования на основе telegram бота.
В Бегете мы долго и успешно занимаемся виртуальным хостингом, используем много OpenSource-решений, и теперь настало время поделиться с сообществом нашей разработкой: файловым менеджером Sprut.IO, который мы разрабатывали для наших пользователей и который используется у нас в панели управления. Приглашаем всех желающих присоединиться к его разработке. О том, как он разрабатывался и почему нас не устроили существующие аналоги, какие костыли технологии мы использовали и кому он может пригодиться, расскажем в этой статье.
Сайт проекта:https://sprut.io
Демо доступно по ссылке: https://demo.sprut.io:9443
Исходный код: https://github.com/LTD-Beget/sprutio
Как-то так получилось, что я написал на Хабре уже несколько статей о библиотеках для хуков. Первая была об общих принципах и реализации на базе Detours, вторая — о более дешевой (но не менее функциональной) библиотеке madCodeHook. Сегодня я расскажу об ещё одном варианте — библиотеке Deviare от компании Nektra. «Ещё одна точно такая же библиотека для хуков?» — спросите вы. «Такая же, да не такая» — отвечу я. У Deviare есть несколько особенностей, отличающих её и от Detours и от madCodeHook и делающей её в некоторых случаях намного более полезной.
Этот модуль родился в результате переосмысления (или недопонимания) мной вот этого пространного документа: Splitting up the settings file, размещённого на официальном сайте Django.
Я много работаю с данными, поэтому практически все процессы у меня завязаны на Jupyter (IPython Notebook). Эта среда прекрасна и я её большой фанат. По сути, Jupyter — это обычная питоновая консоль и весь код там выполняется последовательно. Но иногда возникает желание запустить вычисления в ячейке и, не дожидаясь пока они закончатся, продолжить работу. Например, нужно скачать 1000 урлов и достать у них заголовки страниц. Хорошо бы запустить процесс скачивания и сразу начать отлаживать код для выделения заголовков.
В этой небольшой статье речь пойдет о том, можно ли легко использовать Python для написания скриптов вместо Bash/Sh. Первый вопрос, который возникнет у читателя, пожалуй, а почему, собственно, не использовать Bash/Sh, которые специально были для этого созданы? Созданы они были достаточно давно и, на мой взгляд, имеют достаточно специфичный синтаксис, не сильно похожий на остальные языки, который достаточно сложно запомнить, если вы не администратор 50+ левела. Помните, ли вы навскидку как написать на нем простой if?
Хочу поделиться практическим опытом по установке готового проекта на Django на VPS от Reg.ru. Данное руководство рассчитано на новичков, оно содержит ряд не самых лучших решений, но с ним вы сможете запустить своей проект на Django в течение часа.
Инструкция не содержит настроек безопасности. Она была создана на базе англоязычных инструкций и боли, много боли (ссылки в конце статьи). Инструкция актуальна для настроек: centOS 7, Django 1.9.2 и Python 3.4.3
Доклад с Moscow Python №32 Докладчик: Андрей Киселев Описание: Попробуем собрать и улучшить простой языконезависимый классификатор текстов, исходя из естественных математических соображений.
Доклад с Moscow Python №32 Докладчик: Никита Учителев (Datacentric) Описание: Мое выступление будет кратким введением в обучение реккурентных нейронных сетей. Сейчас обучить свою нейронную сетку может любой желающий, написав всего десяток строк кода. Я расскажу про то, что скрывается за этими строками, и почему нейросети еще не используются повсеместно.
Доклад с Moscow Python №32 Докладчик: Павел Петлинский (Rambler&Co) Описание: Как мы запустили продакшн сервис на последней версии вселенной и что получили