Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Целью любого проекта, будь то разработка сайта, внедрение искусственного интеллекта или модернизация оборудования, является получение бизнес-результата. Поэтому для клиента важно понимать, какую выгоду он получит от внедрения проекта и как это отразится на его прибыли. Кроме того, разработчикам также необходимо оценить эффект от проекта по нескольким причинам: увеличение вероятности получения новых проектов, лучшее понимание потребностей клиента, повышение рыночной стоимости и моральное удовлетворение от значимости своей работы.
С развитием бизнеса нагрузка на приложения возрастает, один из способов масштабировать его под большее количество запросов — запустить Gunicorn-сервер с несколькими worker-процессами в мультипроцессном режиме. Однако при таком подходе клиент Prometheus не выводит нужные нам метрики CPU и RAM. В статье расскажу, как мы решили эту проблему, сохранив метрики и организовав мониторинг в мультипроцессном режиме.
В одном из совместных исследований нам с Хайди требовалось решить такую задачу. Допустим, нам требуется синхронизировать между двумя узлами хеш-граф, например, как в репозитории Git. В Git каждый коммит идентифицируется через соответствующий ему хеш, причём, в коммит могут включаться хеши коммитов-предшественников (то есть, конкретный коммит может содержать более одного хеша, если он получен слиянием). Мы хотели получить минимальное множество таких коммитов, которыми должны обменяться два узла, чтобы их графы получились одинаковыми.
Векторные представления (эмбеддинги, векторы) – это по-настоящему приятный инструмент, но в любом рассказе о векторных представлениях эта техника скрыта за ворохом каких-то страшных словес.
Очередной выпуск англоязычного подкаста Python Bytes
Сегодня я расскажу о том, как был подготовлен материал об одиночестве, «24 hours in an invisible epidemic», опубликованный на платформе Pudding.
Хотел бы перед самой статьёй обсудить вопрос целесообразности писать свой движок, вместо готовых решений. Есть куча статей, которые опишут разные движки от более популярных до менее. Я бы хотел затронуть немного другой вопрос: "Как человеку, который изучал программирование много лет заняться геймдевом?".
Задача оценки нововведений в онлайн и мобильных приложениях возникает повсеместно. Один из наиболее надёжных и популярных способов решения этой задачи - двойной слепой рандомизированный эксперимент, также известный как АБ-тест.
А теперь о том, что происходило в последнее время на других ресурсах.
Рекуррентные нейронные сети уникальны тем, что способны обрабатывать последовательности данных, будь то тексты, временные ряды или даже музыка. В отличие от их бро — сверточных нейронных сетей, которые идеально подходят для обработки изображений, RNN обладают способностью «помнить» предыдущую информацию и использовать ее для обработки текущих данных. Это делает их идеальными для задач, где контекст важен, например, при генерации текста или прогнозировании временных рядов.
В этой статье хочу поделиться с вами информацией по проведенному сравнению производительности нескольких популярных библиотек для простого HTML-парсинга.
В этой статье я постараюсь подробно рассмотреть процесс создания проекта на Python, Pytest и Playwright с применением паттерна Page Object, а также оставлю шаблон yml, который позволит запускать автотесты в CI
Сегодня обсудим, как применять CUPED для повышения чувствительности А/Б тестов. Рассмотрим на простом примере принцип работы CUPED, покажем теоретически за счёт чего снижается дисперсия и приведём пример оценки эксперимента. Обсудим, как выбирать ковариату, как работать с бинарными метриками и что делать при противоречивых результатах.
В своей предыдущей статье я исследовал структуру PyObject и её роль в качестве заголовка для всех объектов среды исполнения CPython. Эта структура играет важнейшую роль в обеспечении наследования и полиморфизма в системе объектов CPython. Но это лишь вершина айсберга.
В этой статье мы опустимся на один уровень ниже и посмотрим, что же происходит внутри среды исполнения Python для выполнения простого действия a + b. Иными словами, мы узнаем о подробностях реализации типов, операторов и динамической диспетчеризации в CPython.
Одной из областей применения ИИ сегодня является автоматизация контроля за сотрудниками. В данном посте мы рассмотрим приложение технологий ML к задаче детектирования спящих людей (в частности, охранников на рабочем месте) по видеозаписям камер наблюдения.
Данная статья рассчитана на специалистов области физических систем безопасности и в частности контроля доступа. Я предполагаю, что статья может быть интересна тем, кто не обладает навыками в программировании, но всегда хотел попробовать реализовать что-то здесь и сейчас, с возможностью непосредственно испытать свою работу на практике.
Мы разработали open-source библиотеку dedoc, которая помогает разработчикам и дата-сайентистам в пару строк кода читать различные форматы текстовых документов и изображений с текстом, и далее приводить информацию к единой аккуратной структуре.
На конец 2023 года язык программирования Python является самым популярным по индексу TIOBE. Что касается работы, то по количеству вакансий в мире язык Python занимает второе место (после JavaScript/TypeScript). Поэтому у соискателей на должность, где требуется Python, возникает потребность подготовки к собеседованиям.
Этот материал посвящён тому, как добавлять собственные данные в предварительно обученные LLM (Large Language Model, большая языковая модель) с применением подхода, основанного на промптах, который называется RAG (Retrieval‑Augmented Generation, генерация ответа с использованием результатов поиска).
Поддержка преобразования речи в текст была в OpenAI API уже давно, а вот из текста в речь, а также распознавание изображений было добавлено совсем недавно. В связи с чем продолжаю свою серию туториалов по разработке собственного ChatGPT бота в Telegram.