Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Cофтверное платформенное решение для автоматизации операционных задач в ИТ и публикации автоматизированных задач в корпоративных каналах коммуникации (Slack, почта, Telegram, и др.). Опыт использования в операторе мобильной связи
* Краткий обзор тайп-чекинга в питоне, mypy, pep484.
* Как я писал библиотеку django-stubs.
* С какими проблемами столкнулся в процессе.
* Что еще планируется сделать.
* DEP (Django Enhancement Proposal) по поводу добавления типов в core.
Никита покажет множество функций Github Actions, поделится собственными впечатлениями и болями от первых месяцев использования, покажет, как сделать собственные инструменты. Это выступление будет интересно тем, кто любит автоматизацию и порядок: тимлиды, сеньоры, опсы и люди, принимающие решения. Какую основную мысль вынесут люди после? Процесс автоматизации в корне изменился. Он стал доступным и простым. Существуют способы, как улучшить процесс свой работы за несколько дней.
Из цикла «Как бы мне?… в Питоне» https://pypi.org/project/systemd-logging/
Из цикла «Как бы мне?… в Питоне» https://pypi.org/project/uwsgiconf/
Из цикла «Как бы мне?… в Питоне» https://pypi.python.org/pypi/pytest-datafixtures
В гостях у Moscow Python Podcast Илья Лебедев, технический директор компании BestDoctor и евангелист Moscow Python. Обсудили как безболезненно перейти на удаленную работу и о инструментах организации процессов.
Из цикла «Как бы мне?… в Питоне»
Из цикла «Как бы мне?… в Питоне»
В гостях у Moscow Python Podcast разработчик Х5 Retail Group Алексей Штырняев. Обсудили нововведения в Python 3.9
В гостях у Moscow Python Podcast Андрей Ермилов и Максим Белоусов, разработчики компании Rambler. Поговорили о извилистом пути Python, и не только, разработчиков
В гостях у Moscow Python Podcast Андрей Гаврилов, Big Data Python developer в EPAM. Поговорили о сложностях связанных с распределенными вычислениями в Big Data и Data science
В гостях у Moscow Python Podcast Петр Ермаков, senior data scientist в компании Lamoda, основатель школы DataGym. Обсудили возможности коллективной работы с jupiter notebook и многое другое.
В гостях у Moscow Python Podcast Василий Панков, руководитель Python разработки в компании Ernst & Young. Поговорили о интеграция Python-приложений с Windows API и зачем нужен Python для работы с приложениями на Windows.
Из доклада вы узнаете:
- как устроена система рекомендаций вакансий hh.ru
- как в hh.ru перешли от стандартного полнотекстового поиска к поиску на основе машинного обучения
At Kiwi.com we have lots and lots of Python projects, some important ones are more than 5 years old. With our explosive growth from a small start-up into an international company, it's critical for us to manage code quality at scale. If we find some issue with nginx configuration, we need an automated way to check all projects for it.
Mars tensor provides a compatible interface like Numpy, users can obtain the ability to handle extreme huge tensor/ndarray by simple import replacement. We extend the interface of Numpy to support create tensor/ndarray on GPU by specifying gpu=True on all the implemented array creation, and also, create sparse matrix via noting sparse=True on some array creation like zeros, eye and so on.
Квестоделы применяют Micropython для разработки квестов в реальности последнего поколения и аркадных игр. Современный квеструм - это около 15 электронно-вычислительных устройств, общающихся по сети (MQTT). Большинство из этих ЭВУ - микроконтроллеры (ESP32), которые управляют периферийными устройствами: mp3-плееры, реле и различные датчики, и используют устройства ввода-вывода: дисплеи, диоды, кнопки, клавиатуры и многие другие
Mypy помогает нам писать качественный код. Но не со всеми ситуациями он может справиться в одиночку. Для решения этой проблемы в mypy есть плагины. В данном докладе будет рассказано о ситуациях, в которых их нужно писать. Я покажу, как писать свой плагин для решения этих проблем, какие инструменты есть в mypy для этого, и как тестировать свой плагин
В "Домклик" больше 50 Python-разработчиков, и мы используем асинхронное программирование с самого начала наших проектов. Польза от корутин с async и await огромна, но вместе с этой пользой приходят специфические сложности. Неожиданно для разработчиков течет память, не ловятся исключения, а доступные "асинхронные" библиотеки для типовых задач часто очень сырые.