Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Автор: Николай Хабаров, Embedded Expert DataArt, евангелист технологий умного дома. В этой статье я расскажу, как написать обычное user space-приложение на Python для современного ARM-процессора с ОС Linux для генерирования сложных последовательностей импульсов на выводах платы. Суть идеи — использовать DMA-модуль процессора для копирования из предварительно подготовленного буфера в памяти в GPIO с высокой точностью по времени. Когда речь заходит о необходимости сгенерировать сложную последовательность импульсов, например, для шаговых двигателей, обычно используют старые добрые простенькие микроконтроллеры с установленной специальной операционной системой реального времени или вообще без операционной системы. Реализация при этом, в лучшем случае, написана на C++. Сейчас процессоры шагнули далеко вперед и имеют массу преимуществ: производительность, возможность использования операционной системы Linux со всей инфраструктурой и ПО, а также высокоуровневых языков программирования, таких как Python. И все же современные микроконтроллеры для генерирования сложных последовательностей на выводах GPIO, как правило, не используют. Я реализовал генерацию импульсов для управления шаговыми двигателями проекта PyCNC — проекта контроллера машин с ЧПУ, станков, 3D-принтеров, полностью написанного на Python и запускаемого на современном ARM-процессоре на плате Raspberry Pi. Статья может быть полезна желающим реализовать генерацию сложных последовательностей установки уровней на выводах одного или нескольких GPIO на других высокоуровневых языках программирования, используя DMA-модули других процессоров. Читать дальше →
В этой статье я расскажу, как написать обычное user space-приложение на Python для современного ARM-процессора с ОС Linux для генерирования сложных последовательностей импульсов на выводах платы. Суть идеи — использовать DMA-модуль процессора для копирования из предварительно подготовленного буфера в памяти в GPIO с высокой точностью по времени.
Python хороший язык для бэкэнда. Но почему его нельзя применить и на frontend? Или можно? Я покажу как на практике можно писать Python код и на frontend (с Rapydscript) и на бэкэнд (Web.py).
Привет! 16-17 июля в 95 км от Москвы пройдет пятая конференция для python-разработчиков PyCon Russia. Видео прошлогодних докладов можно посмотреть на YouTube-канале. Программа PyCon-2017 получается отличной. На конференции выступят: Paul Hildebrandt (Walt Disney Animation Studios, США), Łukasz Langa (Facebook, США), Nina Zakharenko (Venmo, США), АПрограмма PyCon-2017 получается отличной. На конференции выступят: Paul Hildebrandt (Walt Disney Animation Studios, США), Łukasz Langa (Facebook, США), Nina Zakharenko (Venmo, США), Александр Кошкин (Positive Technologies), Кирилл Борисов (Яндекс), Елизавета Шашкова (JetBrains), Михаил Юматов (ЦИАН), Ольга Сентемова (Тинькофф Банк), Игорь Новиков (Scalr), Олег Чуркин (Rambler&Co) — и это не все. Подробности программы — под катом.
Жизнь тестировщика насыщена экспериментами и рутиной. Чем больше рутины и меньше экспериментов, тем тестировщик сильнее грустит. Как разработчики ПО мы можем сделать тестировщика счастливым — написать софт, который автоматизирует рутину. В докладе расскажу об инструменте QaAPI — реализации API для применения в тестировании. Поделюсь опытом разработки такого инструмента в Welltory.
Как известно, чем раньше найден баг, там дешевле его починить. Лучше всего, когда проблема обнаруживается юнит-тестами или статическим анализатором на самой ранней стадии. Иначе обстоят дела с проблемой, проникшей в общую ветку. В этом случае необходимо дождаться прохождения автоматической регрессии, формально описать баг, а после исправления — проверить, что в свежем билде его действительно больше нет. Всего этого мы могли бы избежать, запустив регрессию на dev-бранче перед коммитом в общую ветку. Но это тоже малоэффективно потому, что регрессия выполняется долго и не все тесты в ней имеют отношение к измененному коду Как с этим бороться? В докладе я расскажу про наш опыт автоматизации поиска тестов, покрывающих изменения в dev-бранче, с помощью информации о покрытии кода.
Как известно, чем раньше найден баг, там дешевле его починить. Лучше всего, когда проблема обнаруживается юнит-тестами или статическим анализатором на самой ранней стадии. Иначе обстоят дела с проблемой, проникшей в общую ветку. В этом случае необходимо дождаться прохождения автоматической регрессии, формально описать баг, а после исправления — проверить, что в свежем билде его действительно больше нет. Всего этого мы могли бы избежать, запустив регрессию на dev-бранче перед коммитом в общую ветку. Но это тоже малоэффективно потому, что регрессия выполняется долго и не все тесты в ней имеют отношение к измененному коду
Как с этим бороться? В докладе я расскажу про наш опыт автоматизации поиска тестов, покрывающих изменения в dev-бранче, с помощью информации о покрытии кода.
Евгений Ильин (МАИ, доцент, инженер)
"Создание GUI на Python".
Слайды: http://www.moscowpython.ru/meetup/45/sozdanie-desktop-prilozhenij-na-python/
О выпуске очередной версии автоматического обновлятора торрентов.
Александр Хаёров
"Миры frontend и backend неразделимы и порой важно понимать ключевые вещи в смежных областях. В докладе поговорим о двух важных вещах из мира frontend — промисах и сервис воркерах. Чтобы было веселее — попробуем изучить эти штуки на примере аналогий".
Слайды: http://www.moscowpython.ru/meetup/45/promises-and-service-worker-for-pythonist/
Артём Апалько (RedMadRobot backend-dev)
"Обзорный доклад по опкодам в питоне. Изменения в Python 3.6 (изменение размера, оптимизация branch-prediction)".
Слайды: http://www.moscowpython.ru/meetup/45/python-opcodes/
Разговоры о снижении производительности ради продуктивности.
Я беру паузу в моём обсуждении asyncio в Python, чтобы поговорить о скорости Python. Позвольте представиться, я — ярый поклонник Python, и использую его везде, где только удаётся. Одна из причин, почему люди выступают против этого языка, — то, что он медленный. Некоторые отказываются даже попробовать на нём поработать лишь из-за того, что «X быстрее». Вот мои мысли на этот счёт.
В стандартной библиотеке питона содержится специализированный тип "namedtuple", который, кажется, не получает того внимания, которое он заслуживает. Это одна из прекрасных фич в питоне, которая скрыта с первого взгляда.
Решалась задача анализа текущих предложений на минском рынке недвижимости с целью поиска недооцененных квартир. В качестве источника информации был выбран сайт риэлтерского агентства "Твоя столица".
Больше года назад, когда я работал антиспамщиком в Mail.Ru Group, на меня накатило, и я написал про эксперименты с malloc. В то время я в свое удовольствие помогал проводить семинары по АКОСу на ФИВТе МФТИ, и шла тема про аллокацию памяти. Тема большая и очень интересная, при этом охватывает как низкий уровень ядра, так и вполне себе алгоритмоемкие структуры. Во всех учебниках написано, что одна из основных проблем динамического распределения памяти — это ее непредсказуемость. Как говорится, знал бы прикуп — жил бы в Сочи. Если бы оракул заранее рассказал весь план по которому будет выделяться и освобождаться память, то можно было составить оптимальную стратегию, минимизирующую фрагментацию кучи, пиковое потребление памяти и т.д. Отсюда пошла возня с ручными аллокаторами. В процессе раздумий я натолкнулся на отсутствие инструментов логирования malloc() и free(). Пришлось их написать! Как раз про это была статья (а ещe я изучал macOS). Были запланированы две части, однако жизнь круто повернулась и стало не до malloc(). Итак, пора восстановить справедливость и реализовать обещанное: ударить глубоким обучением по предсказанию работы с кучей.
Слайды: https://speakerdeck.com/9seconds/daemonize
Небольшой рассказ о том, как правильно демонизировались процессы до прихода systemd.
Слайды: https://nikiladonya.github.io/#/4
Небольшой обзор gRPC как дополнение к докладу про Protocol Buffers.
Слайды: https://www.slideshare.net/AleksandrMokrov/protobuf-it
Поговорим о том, что за зверь этот Protocol Buffers и зачем он вообще нужен. Рассмотрим где он может быть полезен, что может дать и с какими проблемами может познакомить. Посравниваем с конкурентами.
Слайды: https://proofit404.github.io/talks/graphql-is-coming/slides/
Уже очень давно стандартом де-факто для дизайна web API стал REST. Но вот GitHub и Facebook анонсировали поддержку GraphQL API. Зачем они это сделали? Стоит ли нам сделать тоже самое? Какие инструменты для этого предоставляет экосистема Python? Хорошо ли они спроектированы? REST уже всё? Ответы на эти вопросы и не только вы узнаете из моего доклада.
Слайды: https://speakerdeck.com/9seconds/own-mustache
Давайте просто возьмем и напишем свой игрушечный шаблонизатор Curly, который функционально примерно равен Mustache за 40 минут. За эти 40 минут я попытаюсь рассказать все-все детали так, чтобы люди, которые умеют строить регулярные выражения, поняли бы, как реализуются такие шаблонизаторы в принципе.
Сегодняшняя статья будет посвящена сравнению моделей работы с иерархическими данными в PostgreSQL, через Django приложение. В статья я специально не использую чистую реализацию в базе данных, т. к. меня интересует именно производительность в среде, приближенной к боевой.