Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Умение модели распознавать намерения собеседника, то есть понимать зачем человек совершил то или иное действие, применимо в большом числе прикладных NLP-задач. К примеру, чат-ботам, голосовым помощникам и другим диалоговые системам это позволит эмоционально реагировать на высказывания собеседника, проявлять понимание, сочувствие и другие эмоции. Кроме того, задача распознавания намерения – это еще один шаг на пути к пониманию человеческой речи (human understanding).
Обзор на лучших функций, включенных в последнюю итерацию Python.
Библиотека для построения GUI на Python
В отличии от Tkinter, Qt, Remi, WxPython позволяет получить интерфейс, который выглядит современно
По сути, этот GUI-фреймворк берёт популярные и хорошо зарекомендовавшие себя GUI-фреймворки и обёртывает их в единую библиотеку, которую просто изучить и затем собирать приложения. Вам даже не нужно писать определение класса, чтобы создать GUI-приложение
Преимущества обёртки
О настройке retry
В этой статье я поделюсь своим опытом настройки CI/CD с использованием панели управления Plesk и Github Actions. Сегодня будем учиться деплоить простенький проект с незамысловатым названием «Helloworld». Он написан на Python-фреймворке Flask, с воркерами на Celery и фронтендом на Angular 8.
Ранее на Хабре очень подробно освещалась тема Автоматизации десктопных GUI приложений на Python. В то время меня очень сильно привлекла эта статья, потому что в ней раскрываются элементы, схожие с элементами создания роботов. А так как по роду своей профессиональной деятельности я занимаюсь роботизацией бизнес-процессов компании (RPA — область, в которой не было полнофункциональных OpenSource аналогов до недавнего времени), данная тема была очень актуальна для меня.
Синхронный и асинхронный код могут быть идентичными, но, тем не менее, могут работать по-разному. Это вопрос правильных абстракций. В этой статье я покажу, как можно написать синхронный код для исполнения асинхронных программ на Python.
Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.