Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Если вы хотя бы отдалённо интересуетесь играми и не прожили последнюю пару лет в тайге, то, вероятно, слышали что-нибудь о Cyberpunk 2077. После долгого ожидания она наконец вышла! И в ней есть мини-игра про взлом! И чем больше получишь в ней очков, тем ценнее приз! Может ли магия Python дать нам преимущество в этом жестоком Нете? Разумеется.
Я Рома, менеджер продукта в Яндекс.Практикуме, где развиваю курс «Мидл Python-разработчик». Мы делаем из начинающих разработчиков крепких мидлов с инженерным мышлением. Сегодня хочу поделиться небольшими заметками о том, над чем стоит работать, если вы джуниор, который хочет стать мидлом.
Недавно мне пришлось начинать проект нового веб сервиса, и я решил протестировать максимальную нагрузочную способность Django, а заодно сравнить её с Flask’ом и AIOHTTP. Результат показался мне неожиданным, поэтому я «просто оставлю» его тут.
На диаграммах ниже приведены результаты простейшего Apache Benchmark’a для фреймворков Django версии 3.1, Flask 1.1 и AIOHTTP 3.7. AIOHTTP работает в «штатном» однопоточном асинхронном режиме, Django и Flask обслуживаются синхронным WSGI сервером Gunicorn с числом потоков, равным числу доступных ядер процессора * 2. ASGI в тесте не участвовал.
В user-generated проектах часто приходится бороться с дубликатами, а для нас это особенно актуально, так как основной контент мобильного приложения iFunny — это изображения, которые постятся десятками тысяч ежедневно. Для поиска повторов мы написали отдельную систему, чтобы облегчить процесс и сэкономить море времени.
Декодирование табличных объектов: Предлагаем архитектуру декодера для восстановления табличных функций по закодированным представлениям, полученным с помощью кодировщика TabNet. Декодер состоит из блоков преобразователей признаков, за которыми следуют слои FC на каждом шаге принятия решения. Выходные данные суммируются для получения реконструированных функций.
Это система архивирования TANGO, позволяет сохранять данные полученные с устройств в системе TANGO.
Хотели представить перевод интересной статьи про обучение с помощью нейронных сетей на табличных данных.
Во время Чемпионата мира по регби в 2019 году я сделал небольшой научный проект Data Science, чтобы попытаться спрогнозировать результаты матчей, написав о нем здесь. Я развил проект до примера от начала до конца, чтобы продемонстрировать, как развернуть модель машинного обучения в виде интерактивного веб-приложения.
Чуть больше года назад перед нами встала задача написать еще одно большое приложение – API к основному хранилищу новостей, и мы сделали это на Rust. В статье мы расскажем о том, что заставило нас отойти от привычного стека технологий, и покажем, какие плюсы по сравнению с Python есть у Rust. Мы не ответим на вопрос, почему выбор пал именно на Rust, а не Go, например, или на какой-либо другой язык. Также мы не будем сравнивать производительность Python- и Rust-приложений – эти темы достойны отдельного обсуждения.