Собрали в одном месте самые важные ссылки
читайте авторский блог
Сегодня мы все чаще используем приложения для обмена мгновенными сообщениями (Facebook Messenger, WhatsApp, Telegram и т. д.) и устройства в виде голосовых помощников (Amazon Echo и Google Home и т. д.), помогающих получать моментальный ответ на запрос. Поэтому современные компании закладывают значительный бюджет в разработку искусственных помощников, чтобы предоставлять своим пользователям наилучший клиентский сервис, когда это необходимо. В этой статье мы расскажем, как использовали технологию искусственного интеллекта DeepPavlov для расширения возможностей обслуживания клиентов компании Интерсвязь.
Когда мы делаем большую серию снимков, часть из них получается нечеткими. С такой же проблемой столкнулась крупная автомобильная компания. Часть фотографий при осмотре авто получались размытой, что могло негативно влиять на продажи.
Некачественные снимки напрямую снижают прибыль.
При написании приложений на Python, для работы с базами данных часто используются объектно-реляционные мапперы (ORM). Примерами ORM являются SQLALchemy, PonyORM и объектно-реляционный маппер, входящий в состав Django. При выборе ORM довольно важную роль играет её производительность.
Как-то раз стало интересно, какие темы выделит LDA (латентное размещение Дирихле) на материалах «Живого Журнала». Как говорится, есть интерес — нет проблем.
Для начала немного про LDA на пальцах, вдаваться в математические подробности не будем (кому интересно — почитает). Итак, LDA — является одним из наиболее распространенных алгоритмов для моделирования тем. Каждый документ (будь то статья, книга или любой другой источник текстовых данных) представляет собой смесь тем, а каждая тема представляет собой смесь слов.
Оригинальная статья: PAWEŁ FERTYK – Getting started with Django middleware
Django поставляется с множеством полезных функций. Одним из них является механизм middleware (переводится как промежуточное программное обеспечение). В этом посте я кратко объясню, как работает middleware и как начать писать свой собственный.
Исходный код, включенный в этот пост, доступен на GitHub.
Работая над голосовым помощником, который упоминается в предыдущей статье, понял, что просто не могу с вами не поделиться прекраснейшей библиотекой FuzzyWuzzy.
Если коротко, то благодаря ей существует возможность произвести нечёткое сравнение строк без каких-либо страданий.
Итак, вашему вниманию представляется перевод страницы Time series forecasting из раздела руководств tensorflow: ссылка. Мои дополнения вместе с иллюстрациями к переводу нацелены помочь с пониманием основных идей в одном из самых интересных направлений ML и эконометрики в целом – прогнозировании временных рядов.
Подготовил для вас подборку самых интересных находок из опенсорса за март 2020.
Видел несколько дашбордов по COVID-19, но не нашёл пока главного — прогноза времени спада эпидемии. Поэтому написал небольшой скрипт на Python. Он забирает данные из таблиц ВОЗ на Github'е, раскладывает по странам, строит линии тренда. И по ним делает прогнозы — когда в каждой стране из ТОП 20 по количеству заболевших COVID-19 можно ожидать спада заражений. Писал на скорую руку, так что не обессудьте. Если интересуют результаты — добро пожаловать под cut.
Учимся находить лучшее для своего разбойника при помощи программирования. Также разбираемся, не водит ли нас программа «за нос».