Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
Learn 5 essential itertools methods to eliminate manual feature engineering waste. Replace nested loops with systematic functions for interactions, polynomial features, and categorical combinations.
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
AI (LLM) сейчас на пике популярности: новые модели выходят каждый месяц. Но чаще всего их используют как инструменты, постоянно требующие времени и внимания. А что, если сделать из них «сотрудников», которые сами автономно будут выполнять часть вашей работы? В этой статье мы шаг за шагом создадим такого «сотрудника» на чистом OpenAI API и добьёмся его полной автономности.
Принес вам кейс о том, как мы с командой оптимизировали работу одного небезызвестного портала с помощью Python/Flask.
Web-фреймворк на основе Werkzeug, Jinja2 и благих намерениях. Скачать можно по ссылке: https://pypi.python.org/pypi/Flask/
В этой статье пойдет речь об одной из самых сложных и интересных архитектур — трансформере, лежащей в основе современных моделей от OpenAI и Google DeepMind. И это не научпоп для обывателя с наивным уровнем объяснения, а полноценный учебный материал, который поможет вам понять работу трансформера на фундаментальном уровне без черных ящиков типа TensorFlow и Pytorch.
Интегрируем российские AI-сервисы (GigaChat от Сбера, YandexGPT и Yandex 360) с OpenClaw — open-source платформой для AI-агентов. Создаём русскоязычных агентов, подключаем CalDAV календарь и Yandex Disk. Все с нуля, с кодом и troubleshooting.
Разберём задачу «Капибегущая строка» с соревнований T-CTF 2025, где хакеры взломали освещение жилого дома и использовали его как бегущую строку для того, чтобы сообщить свои требований.
В этой статье хотел бы рассказать о структуре данных под названием монотонный стек (monotonic stack) и разобрать несколько примеров задач в решении которых он применим.Статья может быть интересна любителям решать алгоритмические задачи, в особенности тем кто готовится к собеседованию.
Практический гайд по созданию Telegram-бота для автоматизированного анализа сайта: broken links, базовый security-check, отчёты. Минимум теории — максимум рабочего кода.
А теперь о том, что происходило в последнее время на других ресурсах.
Буквально на днях Андрей Карпаты, один из ранних сооснователей OpenAI, покинувший компанию, исследователь нейросетей, опубликовал на Гитхаб фантастическую вещь: чистый (без специализированных библиотек) 200-строчный python-код трансформера, аналога GPT-2, для изучения всеми желающими. И написал в блоге статью для понимания этого кода (и работы трансформеров).
В этой статье мы не просто импортируем готовые методы из sklearn. Мы разберем математическую логику трех мощных подходов, напишем их «примитивные» реализации на NumPy/Pandas, чтобы понять механику работы «под капотом», и проверим их в деле на реальном кейсе.
Would you like to learn how to work with LLMs locally on your own computer? How do you integrate your Python projects with a local model? Christopher Trudeau is back on the show this week with another batch of PyCoder's Weekly articles and projects.
Youtube video
Python клиент для Redis. Скачать можно по ссылке: https://pypi.python.org/pypi/redis/
ㅤ
1 Day, 15 Speakers, 6 hours of live talks including from Sarah Boyce, Sheena O'Connell, Carlton Gibson, and Will Vincent. Sign up and save the date!
Сегодня я расскажу о том, как я за 2 месяца с полного нуля создал доменную RAG систему с корпусом в 20+ книг. В статье затрону проблемы парсинга данных (особенно PDF документов, с которыми приходилось иметь дело), чанкинга, создания и индексации эмбеддингов, а также самого интересного – ретривера. Расскажу о latency, трейд-оффах, и сложностях реализации подобных систем локально на ноутбуке (хоть и «игровом») без использования API LLM.