Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
12 000 MP3 без тегов, 15 лет прокрастинации, один выходной на код. Асинхронный распознаватель на Python + Shazam: как обойти rate limiting, починить кривые кодировки и не съесть всю память. Код открыт.
Как только ты начинаешь углубляться в изучение баз данных, так сразу на горизонте возникают такие понятия как подзапросы, CTE, представления и временные таблицы. По опыту работы в университете заметил, что с этими темами у людей часто возникают проблемы и недопонимания. В частности больше всего путаницы вносит именно CTE.
Сегодня поговорим о том, как включать и выключать функциональность в Django, не разворачивая каждый раз новый деплой. В больших проектах эту задачу решают через feature flags, такие условные флажки , которые позволяют запускать скрытые возможности лишь для части пользователей или откатывать фичи, не выкатывая заново весь код. Если вы хотите поэтапно раскатать новую функцию, сделать A/B тест или просто спрятать недоделанный модуль за переключателем, вам сюда.
В этой статье я расскажу о способе написания тестов для LLM-приложений с использованием инструмента DeepEval. Рассмотрены базовые концепции данного инструмента, а также приведен пример его использования на реальном приложении c RAG. Будет теория и много примеров на Python.
Однажды у меня возникла идея, что с моим музыкальным хобби мне могло бы помочь ML. Если убрать ее, то я снова смогу делать подборку в фоне и получать удовольствиеЯ не эксперт в ML, но задача вроде бы понятная - готовим датасет, берем модель, обучаем, приключение на 20 минут....сейчас, спустя год, когда мой pet-project наконец-то работает.
В тексте разбираются dict, NamedTuple, dataclass и Pydantic — от быстрого прототипирования до строгой валидации данных.
Очередной выпуск англоязычного подкаста Python Bytes
Современная экосистема Python переживает большую трансформацию в подходах к обработке, валидации и (де)сериализации данных. Еще совсем недавно (десять лет назад) в питоне не было аннотаций типов, все использовали ручные проверки типов, да и в принципе мало кто заморачивался с контрактами для данных.
Вторая часть из серии статей «Сервисы — место, где живет бизнес логика». Если Вы еще не знакомы с первой частью, то рекомендую начать с нее, чтобы у вас сложилась общая картина. Сегодня мы постараемся ответить на все оставшиеся вопросы: познакомимся с прекрасной, легковесной DI-библиотекой, научимся «инжектить» в Django, посмотрим на несколько дашбордов в Кибане и поговорим про доменные модели.
Нам обещали, что ИИ заменит инженеров, а дали вежливых чат-ботов, которые галлюцинируют и путаются в зависимостях. Мы потеряли cтруктуру. В этой статье я реанимирую идеи Символистов 80-х и объединяю их с мощью современных LLM.
Если PyTorch является фундаментом, настоящим Атлантом, на плечах которого держатся тензорные вычисления, то какую роль играют его помощники? В этой статье мы проведём ревизию джентльменского набора LLM инженера. Для этого мы изучим функционал, методы работы и даже заглянем в исходный код таких библиотек, как PyTorch, Transformers, Accelerate, Bitsandbytes, PEFT и Unsloth.
А теперь о том, что происходило в последнее время на других ресурсах.
В какой-то момент на старте в нашем data-сервисе (известная в узких кругах аналитическая платформа для селлеров WB/Ozon «Таблички») стало возникать много фоновых работ: ETL‑сенсоры, сложные API‑запросы к маркетплейсам, пересчёты витрин, обслуживание «сервисных» задач. К тому же добавилась потребность сгладить пики нагрузки на БД, растянув поступающую нагрузку во времени.
Практический опыт тонкой настройки текстовой генерации для модели Gemma 3 с использованием QLoRA на видеокарте RTX 4090 (24 GB).
Гибкий фреймворк для написания web-пауков (парсеров). Скачать можно по ссылке: https://pypi.python.org/pypi/scrapy
Реляционная модель обычно ассоциируется с аккуратными строками и столбцами, но на практике ей регулярно пытаются скормить то, для чего она будто бы не предназначена. В этой статье — эксперимент на грани здравого смысла: разложить фильм на пиксели, превратить кадры в строки и посмотреть, что получится, если к видео применить привычный SQL. Без обещаний пользы и универсальности — зато с честным разбором того, где такой подход неожиданно работает, а где начинает сопротивляться сама природа данных.
В этом посте мы вновь обратимся к старым добрым классическим процессорам (CPU) и вновь поговорим о том, насколько они адекватны применительно к современным ML-моделям. Безусловно, ЦП обычно не так хороши для обслуживания связанных с машинным обучением рабочих нагрузок как графические процессоры, зато их гораздо проще приобрести.
Django’s new Task Framework makes it surprisingly easy to replace Celery, covering configuration, task migration, queues, workers, and periodic jobs with simpler, built-in tooling.