Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Задача деплоя моделей машинного обучения в продакшн — это всегда боль и страдания, потому что очень некомфортно вылезать из уютного jupyter notebook в мир мониторинга и отказоустойчивости.
Мы уже писали про первую итерацию рефакторинга рекомендательной системы онлайн-кинотеатра ivi. За прошедший год мы почти не дорабатывали архитектуру приложения (из глобального — только перезд с устаревших python 2.7 и python 3.4 на «свежий» python 3.6), зато добавили несколько новых ML моделей и сразу столкнулись с проблемой выкатывания новых алгоритмов в продакшн. В статье я расскажу про наш опыт внедрения такого инструмента управления потоками выполнения задач как Apache Airflow: почему у команды возникла эта необходимость, чем не устраивало существующее решение, какие костыли пришлось запилить по дороге и что из этого получилось.
Когда человек учится играть в гольф, большую часть времени он обычно проводит за постановкой базового удара. К другим ударам он подходит потом, постепенно, изучая те или иные хитрости, основываясь на базовом ударе и развивая его. Сходным образом мы пока что фокусировались на понимании алгоритма обратного распространения. Это наш «базовый удар», основа для обучения для большей части работы с нейросетями (НС). В этой главе я расскажу о наборе техник, которые можно использовать для улучшения нашей простейшей реализации обратного распространения, и улучшить способ обучения НС.
В предыдущем посте было рассмотрено как заполнить запрос в word с помощью python. В этот раз будет продемонстрировано как заполнить сразу несколько word документов данными из таблицы excel.
Перед тем как работать с программой, нам необходимо подготовить файл excel, где будут содержаться исходные данные.
Работа с VS Code Remote и Windows Subsystem for Linux (WSL) дает возможность использовать полнофункциональную среду разработки Linux на ноутбуке или десктопе с предустановленной Windows. В этом материале рассмотрим то, как использовать эти инструменты для разработки приложений на Python в Linux.
Являюсь счастливым пользователем операционной системы GNU/Linux.И как многим известно, игрушек идущих на линукс без дополнительных танцев с бубном намного меньше чем в «Винде».
И еще меньше игр в жанре MMORPG.
Однако, где-то пол года или год назад я узнал что под линукс портировали игру Albion Online.
Игра очень занимательная, однако занимает достаточно большое количество времени. И дабы не тратить свои драгоценные часы жизни по напрасну, я решил написать бота. Который будет фармить мне ресурсы, пока я буду заниматься своими делами.
Релиз Python 3.8 намечен на октябрь 2019 года, но уже сейчас у каждого есть возможность пощупать набор новых фишек языка. Пока пишу этот пост, на официальном сайте доступна версия python 3.8b2.
Итак, что же нам готовит релиз грядущий?
Не смотря на то что механизм Attention описан в англоязычной литературе, в русскоязычном секторе достойного описание данной технологии я до сих пор не встречал. На нашем языке есть много статей по Искусственному Интеллекту (ИИ). Тем не менее, те статьи, которые удалось найти, раскрывают только самые простые модели ИИ, например, свёрточные сети, генеративные сети. Однако, по передовым новейшим разработками в области ИИ статей в русскоязычном секторе крайне мало.
В недавней публикации здесь на сайте описывалось устройство, позволяющее незрячим людям «видеть» изображение, преобразуя его с помощью звуковых волн. С технической точки зрения, в той статье не было никаких деталей вообще (а вдруг украдут идею за миллион), но сама концепция показалась интересной. Имея некоторый опыт обработки сигналов, я решил поэкспериментировать самостоятельно.