Собрали в одном месте самые важные ссылки
читайте авторский блог
Цель доклада - познакомить слушателей с инструментами построения batch processing задач в экосистеме Python. В презентации я рассказал про две наиболее популярных тулзы: Luigi и Apache Airflow.
Материал, описанный ниже, является результатом совместной работы с преподавателями ТУ Ильменау в рамках местного курсового проекта (Advanced Research Project). Опыт интересный, но и не лишенный определенных сложностей. Делали мы этот проект (и ещё один) вместе с моей тогда ещё невестой — да, так вот нам повезло и учиться вместе, и поехать на стажировку в Германию. По правде сказать, эту часть работы делала в большей степени именно она, но популяризировать эту тему хочется мне.
В данной статье рассмотрен метод расчёта каннибализации для мобильного приложения на основе классического A/B-теста. В данном случае рассматриваются и оцениваются целевые действия в рамках процесса реаттрибуции с рекламного источника (Direct, Criteo, AdWords UAC и прочих) по сравнению с целевыми действиями в группе, на которую реклама была отключена.
В статье дан обзор классических методик сравнения независимых выборок с кратким теоретическим базисом и описанием примененных библиотек, в т.ч. вкратце описывается суть метода bootstrap’а и его реализация в библиотеке FaceBook Bootstrapped, а также проблемы, возникающие на практике при применении этих методик, и способы их решения.
Вы, возможно, знаете, что компьютеры теперь могут автоматически учиться играть в игры ATARI(получая на вход сырые игровые пиксели!). Они бьют чемпионов мира в игру Го, виртуальные четвероногие учатся бегать и прыгать, а роботы учатся выполнять сложные задачи манипуляции, которые бросают вызов явному программированию. Оказывается, что все эти достижения не обходятся без RL. Я также заинтересовался RL в течение прошлого года: я работал с книгой Ричарда Саттона (прим.пер.: ссылка заменена), читал курс Дэвида Сильвера, смотрел лекции Джона Шульмана, написал библиотеку RL на Javascript, летом проходил практику в DeepMind, работая в группе DeepRL, и совсем недавно — в разработке OpenAI Gym, – нового инструментария RL. Так что я, конечно, был на этой волне, по крайней мере, год, но до сих пор не удосужился написать заметку о том, почему RL имеет большое значение, о чем он, как все это развивается.