Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Больше года назад, когда я работал антиспамщиком в Mail.Ru Group, на меня накатило, и я написал про эксперименты с malloc. В то время я в свое удовольствие помогал проводить семинары по АКОСу на ФИВТе МФТИ, и шла тема про аллокацию памяти. Тема большая и очень интересная, при этом охватывает как низкий уровень ядра, так и вполне себе алгоритмоемкие структуры. Во всех учебниках написано, что одна из основных проблем динамического распределения памяти — это ее непредсказуемость. Как говорится, знал бы прикуп — жил бы в Сочи. Если бы оракул заранее рассказал весь план по которому будет выделяться и освобождаться память, то можно было составить оптимальную стратегию, минимизирующую фрагментацию кучи, пиковое потребление памяти и т.д. Отсюда пошла возня с ручными аллокаторами. В процессе раздумий я натолкнулся на отсутствие инструментов логирования malloc() и free(). Пришлось их написать! Как раз про это была статья (а ещe я изучал macOS). Были запланированы две части, однако жизнь круто повернулась и стало не до malloc(). Итак, пора восстановить справедливость и реализовать обещанное: ударить глубоким обучением по предсказанию работы с кучей.
Введение в web scraping на Python. Извлекае описания работ с Indeed.com силами Urllib и BeautifulSoup
Слайды: https://speakerdeck.com/9seconds/daemonize
Небольшой рассказ о том, как правильно демонизировались процессы до прихода systemd.
Слайды: https://nikiladonya.github.io/#/4
Небольшой обзор gRPC как дополнение к докладу про Protocol Buffers.
Слайды: https://www.slideshare.net/AleksandrMokrov/protobuf-it
Поговорим о том, что за зверь этот Protocol Buffers и зачем он вообще нужен. Рассмотрим где он может быть полезен, что может дать и с какими проблемами может познакомить. Посравниваем с конкурентами.
Слайды: https://proofit404.github.io/talks/graphql-is-coming/slides/
Уже очень давно стандартом де-факто для дизайна web API стал REST. Но вот GitHub и Facebook анонсировали поддержку GraphQL API. Зачем они это сделали? Стоит ли нам сделать тоже самое? Какие инструменты для этого предоставляет экосистема Python? Хорошо ли они спроектированы? REST уже всё? Ответы на эти вопросы и не только вы узнаете из моего доклада.
Слайды: https://speakerdeck.com/9seconds/own-mustache
Давайте просто возьмем и напишем свой игрушечный шаблонизатор Curly, который функционально примерно равен Mustache за 40 минут. За эти 40 минут я попытаюсь рассказать все-все детали так, чтобы люди, которые умеют строить регулярные выражения, поняли бы, как реализуются такие шаблонизаторы в принципе.