Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Некоторое время назад у нас появился интересный проект по созданию сервиса, генерирующего документы в формате PDF. И появилась задача — написать тесты, которые проверят документ в мельчайших деталях, включая и содержимое, и вёрстку. В данной статье мы расскажем, каким образом справились с этой задачей.
Хотите сделать процесс тестирования более эффективным и покрыть больше случаев с меньшим количеством кода? Тогда параметризованные тесты в Pytest — именно то, что вам нужно. В этой статье мы разберёмся, как с помощью параметризации можно существенно ускорить и упростить тестирование вашего приложения.
Статический анализатор Python-кода. Скачать можно по ссылке: https://pypi.python.org/pypi/pylint/
Я хотел сделать видео про переменные, которое бы рассказывало: а как на самом деле происходит создание и поиск имени? Все рассказывают про переменные, как про какие "коробки" для значений. А не они не коробки!
В этой статье я расскажу о Swagger и о том, как сгенерировать API и Pydantic модели из Swagger-документации для FastAPI, используя инструмент OpenAPI Generator. В конце статьи вы найдете ссылки на исходный код.
8 апреля 2024 года автор статьи, основатель и СЕО компании Modal Labs, Эрик Бернхардссон планировал посмотреть свое первое полное солнечное затмение. За день до этого ему пришла в голову идея — что, если попробовать рассчитать периодичность этого явления в прошлом и будущем, используя Python?
Практически все боты используют какое-нибудь хранилище информации. Чаще всего применяются базы данных, но иногда их использование может быть избыточным, особенно если вам не нужны ACID-транзакции и есть желание менять данные руками в максимально простом интерфейсе. Для хранения информации можно использовать гугл-таблицы. Сегодня мы разберём пример телеграмм бота для проведения тестов, где вопросы и ответы хранятся в разных вкладках одной Google-таблицы.
Фреймворк для работы с AMQP. Скачать можно по ссылке: https://pypi.python.org/pypi/kombu/
Learn about the differences between Requests, HTTPX, and AIOHTTP, and when to use each library for your Python projects.
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
In data science you’ll sometimes hear a debate between R and Python. Cosima says ‘why not choose both?’ She outlines a data pipeline that uses the best tool for each job.
Python интерфейс для MongoDB. Скачать можно по ссылке: https://pypi.python.org/pypi/pymongo/
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
5 лет назад я задался целью создать сильный искусственный интеллект (СИИ).Думаю, стоит начать с того, как я создал бота для Телеграма с цепями Маркова.
Здесь я не буду детально объяснять базовый алгоритм CUPED аб-тестирования: про это уже достаточно материала в сети. Основное внимание уделим рассмотрению метода через призму регрессий. Цель статьи - познакомить читателя с теоремой, безумно полезной для понимания работы регрессий, а главное - продемонстрировать, как с помощью этой теоремы проводить CUPED тесты не в три последовательных шага (как в базовом алгоритме), а с помощью одной регрессии.
Дело в том, что для своего пет-проекта мне нужна была рисовалка на минималке, но при этом, должна иметь базовый функционал, от нее не требуется быть полноценным графическим редактором.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/