Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Richard likes using Makefiles. They work great both as simple task runners as well as build systems for medium-size projects. This is his starter template for Python projects.
“Celery is the de facto solution for background workers and cron jobs in the Python ecosystem, but it’s full of footguns.” This article describes the problems and offers some solutions.
При работе с большими коллекциями в MongoDB, размер которых превышал десятки миллионов записей, возникла необходимость формировать случайные выборки уникальных значений полей, принадлежащих документам этой коллекции.Для такой операции, в MongoDB штатно предусмотрена функция $sample, которую можно использовать в составе pipeline при проведении агрегации данных. Однако, как показала практика, выполнение выборки полей таким образом на большой коллекции может занимать весьма ощутимое время. Чтобы сократить время выполнения таких выборок, потребовалось разработать собственный алгоритм, который на порядки увеличил скорость работы. Ниже приведен подход и вариант реализации данного алгоритма.
В последнее время все большей популярностью пользуются различные чаты на основе ChatGPT. Они доступны не только в формате веб-версий или telegram-ботов, но и в виде отдельных приложений для разных платформ. В один прекрасный день я наткнулся на новое приложение под названием Bavarder, но интерфейс показался мне не очень удобным и наглядным, и я решил создать на основе этого приложения своё.
Как известно, для успешной работы системы детекции и классификации (СДК) с применением технологии компьютерного зрения необходим большой объем данных, в том числе разметка объектов на изображении. Такая предварительная подготовка трудоемка и длительна. До сих пор работа по разметке объектов для создания обучающей выборки проводится в ручном режиме, хотя уже применяется и определенная автоматизация. Один из возможных вариантов такой автоматизации и был рассмотрен в работе.
В этой статье расскажу о разработке типового фреймворка для тестирования API – на Python, с нуля, шаг за шагом. В итоге получим полностью готовый тестовый фреймворк – надеюсь, с его помощью вы сможете сделать тестовое задание для собеседования или просто улучшить ваш уже действующий тестовый фреймворк.
Швейцарский армейский нож веб-разработки Python. Скачать можно по ссылке: https://pypi.python.org/pypi/Werkzeug/
Модуль для автоматизации тестирования web-приложений. Скачать можно по ссылке: https://pypi.python.org/pypi/selenium/
Швейцарский армейский нож веб-разработки Python. Скачать можно по ссылке: https://pypi.python.org/pypi/Werkzeug/
Распределенная очередь задач. Скачать можно по ссылке: https://pypi.python.org/pypi/celery/
В прошлой части мы поговорили про эволюцию DETR. А это значит, что сегодня самая пора поговорить про другие варианты исполнения архитектуры и их нюансы.
Набор пользовательских расширений для Django-проектов. Скачать можно по ссылке: https://pypi.python.org/pypi/django-extensions/
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
А теперь о том, что происходило в последнее время на других ресурсах.
PyroMark (расшифровывается как Python Rust Optimized Markdown) - быстрый парсер Markdown для Python, написанный на Rust. В 125 раз быстрее, чем Markdown, в 109 раз быстрее, чем markdown-it-py, в 86 раз быстрее, чем mistune. Если вы используете threading, разница с другими библиотеками будет еще более огромной, так как pyromark освобождает GIL.
Развёртывание ПО, или деплой (deploy) — этап в разработке, в Devops в целом, это действия, которые делают ПО готовым к использованию. Если вы умеете в грамотный деплой, масштабирование и управление конвейерами (CI/CD), то ваш софт будет конкурентоспособным.