Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Большая боль разработчиков, которые приходят на новый проект — для развертывания сервиса локально нужно пообщаться минимум с десятком людей, не говоря уже про интеграцию с CI/CD-сервером. В один момент мы решили реализовать это удобнее, заодно сократив время онбординга новых сотрудников.
Развитие микроэлектроники, ИТ технологий и широкого спектра программных продуктов открыло новые возможности по контролю всего. Датчики, камеры, цифровые следы… Магнитофон в чемодане уже неактуален.
Когда выходит очередная версия Python, все внимание достается новым фичам языка: моржовому оператору, слиянию словарей, паттерн-матчингу. Еще много пишут об изменениях в асинхронной работе (модуль asyncio) и типизации (модуль typing) — эти модули на виду и бурно развиваются.
Чтобы уверенно пересечь незнакомую местность, можно или двигаться быстрее, или подыскивать удобную дорожку. Другими словами, слишком пристальное внимание к скорости как таковой может вас притормозить. То же касается и разработки программного обеспечения.
TileTool -игра на Python за считанные минуты. Модуль генерации и построения двухмерных игровых миров TileTool, базирующийся на небезызвестном PyGame, экономит кучу времени и помогает детям, изучающим программирование без боли освоить геймдев, а инди разработчикам упростить и ускорить разработку.
На прошлом уроке мы научились превращать набор особых точек, найденных специальным детектором особых точек, в граф. Там же я объяснил, зачем это вообще надо. Сегодня мы будем изучать такую область науки о компьютерном зрении, как нахождение областей интереса на изображении. Как правило, это вторая часть этапа обработки изображений (см. первый урок). И так, предположим, нам надо найти на изображении дорожный знак. Пусть мы пока ограничимся только поиском знаков «кирпич».
Предложенный алгоритм - это очень ранний прототип рабочей версии. Суть публикации познакомить всех желающих с возможностями генетических алгоритмов в различных сферах бизнеса.
Делимся материалом о том, насколько вредным может стать привыкание к библиотекам и насколько полезными — инструменты автоматизированного тестирования. За подробностями приглашаем под кат.
Для визуализации интерактивных карт рассмотрим библиотеку - Folium.
Folium — это мощная библиотека визуализации данных в Python, которая была создана в первую очередь для того, чтобы помочь людям визуализировать гео-пространственные данные.
В Python 3.10 имплементирован своего рода оператор switch — что-то вроде него. Оператор switch в других языках, таких как C или Java, выполняет простой матчинг значения переменной и исполняет код в зависимости от этой величины. Он может использоваться просто, как обычный оператор switch, но способен на гораздо большее.
«How I Met Your Mother», season 6, ep. 7 Коля любит циклы. Толя любит циклы. Оля любит циклы. Все любят циклы. И Сережа тоже. Один Мамба их не любит. И вот почему.
В данной статье я расскажу вам историю "как я до этого дошёл" и мы рассмотрим основные преимущества данной библиотеки. Все полезные ссылки вы найдёте в конце статьи.
В StarCraft II есть встроенные боты, и все с ними хорошо, за исключением того, что они немного тупые, но речь пойдет не о них. В 2017 году разработчик игры компания Blizzard Entertainment опубликовала API, позволяющий создавать внешних ботов. Однако, по какой-то странной причине Blizzard рассматривает этот API как сугубо исследовательский проект, где боты должны сражаться только друг с другом. Нормальной возможности поиграть человеку с ботами они почему-то не сделали, хотя многие геймеры рассматривают ботов как довольно неплохой инструмент тренировок.
Значительное количество задач, предусматривающих обучение глубоких нейронных сетей, можно решить на отдельном компьютере, обладающем единственным, сравнительно мощным и быстрым GPU. Но бывает так, что нужно что-то помощнее. Например — данные могут просто не поместиться в память, доступную на отдельной машине. Или окажется, что имеющееся «железо» просто не «потянет» некую задачу. В результате может возникнуть необходимость в горизонтальном масштабировании вычислительных мощностей.
Недавно понадобилось мне подключить мой проект (сайт на WordPress, Телеграм-канал, ВК группу) к фильтру матов и озадачился я предложениями, которые выдает интернет. Поэтому решил проанализировать те, что смог найти и составить личный список, который, надеюсь поможет коммунити Хабра.
Спойлер: найдено всего два сервиса и если знаете еще, то пишите в комментариях.
Под катом вас ждёт чертёж установки, блок-схемы агента, работающего методом проб и ошибок, а также визуализации, видеоролики и, конечно, код. Материалом делимся к старту нашего флагманского курса по Data Science.
Агент-критик Softmax оптимизирует выработку энергии в моделируемой по реальным данным меняющейся среде освещения.
Представление документа в виде простого текста понадобится для анализа его содержимого: индексирования и поиска, классификации, предварительной проверки.
Существует множество проверенных решений, основанных на разных алгоритмах. Этот пример использует элементы машинного обучения, текущий уровень развития инструментов, позволяет с минимальными усилиями решать "бытовые задачи". В качестве меры сходства - косинусное сходство. Сравнение многомерных массивов (изображение в цифровом пространстве), ресурсоемкий процесс, поэтому, применяем обученную свёрточную нейронную сеть для уменьшения размерности с учетом важных пространственных признаков. Библиотека keras содержит готовые модели под разные задачи, этот пример задействует архитектуру VGG16 обученную на данных imagenet. Вход в сеть (N, 224, 224, 3), выход (1, 512).
У нас есть несколько способов понимания данных. Зачастую, когда мы анализируем их, то думаем о визуализации в последнюю очередь. Тем не менее, наш разум устроен так, что нам нужна визуальная форма вещей, которые мы хотим исследовать. Поэтому визуализация необходима не только для представления каких-то выводов, но и для выявления закономерностей мира.