Собрали в одном месте самые важные ссылки
читайте авторский блог
Готовить совсем некогда, но я нашел решение проблемы…. А что, если приятное соединить с полезным и провел аналитику по рецептам простых блюд…ну для холостяков 😊 с помощью с моей рабочей системы PolyAnalyst.Данные я взял с сайта с рецептами eda.ru воспользовавшись внутренним парсером сайтов.Извлечение происходило по разделам, было получено следующее количество рецептов
Группа принципов проектирования, связанных с разработкой программного обеспечения, предложенные Робертом Мартином. Характеризуют принципы, которые рекомендуется соблюдать при написании программного кода. Эти правила помогают писать код, который легко масштабировать и поддерживать.Основная цель статьи - познакомить Вас с общими принципами SOLID и показать примеры на языке Python.
Voilà это библиотека, которая позволяет превращать Jupyter Notebook’и в интерактивные веб-приложения и дашборды. С ее помщью вы сможете продемонстировать свою работу третьим лицам или создать целый веб-сервис. В этой статье рассмотрим основные ее возможности...
Мой скромный опыт запуска нейросетей на ноутбуке для восстановления старых фотографий
С 2016 года у некоторых моделей MacBook Pro есть сенсорная OLED-панель. По сути, она просто заменяет функциональные клавиши. Но с ней чуть интересней: на тачбар можно вывести закладки и даже медиаэлементы.
На примере игры с динозавриком показываю, как написать свою программу для тачбара с помощью открытой библиотеки PyTouchBar.
Как запускать приложение и сервис написанные на python под android при запуске устройства. Что бы это сделать придется разбираться как работает buildozer и pythonforandroid. Т.к. на текущий момент сделать это по человечески не представлялось возможным, из-за того что разработчики kivy не позаботились об этом.
Пора пополнять библиотеку программиста. Пытаетесь найти что-нибудь для начинающих о языке Python в интернете? Не можете решить, с чего начать? Как структурировать это море информации? В каком порядке изучать? Если вы задаетесь подобными вопросами, потому что хотите заложить фундамент будущей карьеры питониста — эта книга для вас! Вместо скучного перечисления возможностей языка авторы рассказывают, как сочетать разные структурные элементы Python, чтобы сразу создавать скрипты и приложения. Книга построена по принципу 80/20: большую часть полезной информации можно усвоить, изучив несколько критически важных концепций. Освоив самые популярные команды и приемы, вы сразу сосредоточитесь на решении реальных повседневных задач.
В Python имеется так много встроенных исключений, что программисты редко нуждаются в создании и использовании пользовательских исключений. Или это не так?
Сегодня поделюсь своим опытом реализации model based-подхода в написании python API автотестов на проекте «База заказов».
Проект представляет из себя приложение с микросервисной архитектурой для обработки, хранения, конфигурирации заказов, нотифицирования целевых систем и встроенным механизмом запуска процессов подключения услуг. Приложение является модулем общей системы и не имеет фронта как такового, только API интерфейс.
Этот небольшой путеводитель по возможностям языка Python меня сподвиг написать довольно существенный, на мой взгляд, разрыв между декларируемыми объемами всевозможных курсов программирования и требованиями реальных, даже достаточно скромнооплачиваеых вакансий, а также некоторая обобщенность подобных Python-путеводителей, найденных мной на просторах Сети. Особенно выбивают из равновесия советы изучить, скажем, «Алгоритмы и структуры данных» или «SQL».
С чего начать изучение нового языка? Чаще всего люди на раннем этапе используют стандартный лексико-грамматический метод с доминированием письменного языка, который показал себя медленным и весьма скучным — вам чаще всего нужна зашкаливающая мотивация, чтобы не бросить где-то посередине.
По умолчанию все Django-проекты доступны по адресу http://localhost:8000 или http://127.0.0.1:8000 что одно и тоже. Эта адреса твоего локального компьютера. Соответственно никто другой в Интернете, перейдя по одному из этих адресов, ваш сайт не увидит. Проект пока рано заливать на какой-то хостинг или выделенный сервер, но показать его другому человеку уже нужно: похвастаться другу, человеку и команды разработки, заказчику и т.д. Даже если этот человек подключится к WI-FI у вас дома и будет находиться с сайтом в одной сети, localhost будет перенаправлять гостя на своё же устройство, а не на ваш сайт. Что делать, как показать Django-проект, которые запускается на локальном сервере, недоступном в Интернете?
Многие знакомы с алгоритмами дерева отрезков и корневой декомпозицией. Однако, не многие задаются вопросом о том, почему они устроены именно так, как они устроенны, и нельзя ли немного изменив их получить выигрыш во времени работы или памяти. Одно из таких изменений я бы и хотел рассмотреть в этой статье.
Когда мы расставляем мебель в комнате, мы ориентируемся на габаритные размеры мебели и фурнитуры, а не на их занимаемую площадь, и мебель часто квадратной формы. С полигонами на карте дело обстоит немного иначе, они могут быть произвольной формы, но должны иметь определенную площадь, а задача такая же как и с мебелью - уместить всё в комнату (участок). Когда полигоны квадратные, то рассчитать нужное изменение длины ребра для получение желаемой площади, не так и сложно. С полигонами сложной формы всё не так просто, но и это тоже не проблема, ведь можно методом тыка подобрать нужную площадь. Проблема возникает когда количество полигонов возрастает. Пример: на изменение полигона сложной формы уходит 5 минут (грубо говоря), но нам нужно изменить 15 полигонов, считаем и получаем 75 минут. За 75 минут можно сделать гору полезных дел, а всего было отредактировано 15 полигонов. Если полигоны придется менять заново? вдруг нужно их будет разбить на другую площадь? Вот была бы такая программа, которая сама бы изменяла полигон и добавляла бы нужную площадь.
На мастер-классе вы будете первыми, кто воспользуется нашей oпенсорсной генеративной моделью. Обсудим, что такое языковая модель и как ее использовать для conversational AI. И на практике: Поборемся с основной проблемой языковых моделей, обученных на корпусе из Интернета — генерация токсичных ответов. Повысим качество ответов болталки с помощью классификаторов. Улучшим качество с помощью промт-тюнинга. Найдем топовый алгоритм декодирования (чтобы ответы были длинные и кайфовые). И в конце обернем нашу модель в сервис и телеграм бота. Так у каждого участника МК останется бот, с которым он сможет поболтать в любой момент. Мастер-класс рассчитан на ML инженеров, которые смогут разобраться с технологиями NLP.
Доклад про выбор компонентов решения MLOps и первые шаги внедрения. Рассчитан на архитекторов, тимлидов и датасаентистов, вовлеченных в построение инфраструктуры для работы моделей машинного обучения. Слушатели смогут понять, зачем нужен MLOps и зачем заниматься его внедрением, узнают, каков был наш путь по выбору компонентов решения и как мы их внедряем.
Летом 2021 Яндекс Погода представила новую модель машинного обучения для прогнозирования дождя — Meteum 2.0. Впервые в истории она опирается не только на данные специализированных приборов наблюдения за погодой, но и на сообщения пользователей об осадках. До Яндекса никто в мире так не делал. Я расскажу, какие данные Яндекс Погода использует для создания карты осадков, как с помощью python и машинного обучения улучшить качество классических методов прогноза. Подробно опишу этапы обучения модели и то, с какими трудностями пришлось при этом столкнуться.
Как подружить OpenAPI и JSON:API. Почему мы решили использовать JSON:API в нашем FastAPI приложении, и какие задачи решает данная спецификация. Для чего применять Compound Documents (included ресурсы). Почему мы не захотели использовать Django с DRF и расширение для JSON:API, а выбрали именно FastAPI. Доклад рассчитан на разработчиков, имеющих опыт с веб-приложениями на Python, а также тех, кто работает с REST API. Слушатели познакомятся со спецификацией JSON:API, узнают, как и зачем её применять, научатся применять готовые решения для быстрого создания ресурсов с поддержкой JSON:API.
В докладе рассматривается текущее состояние PyPI: от статистики по пакетам и отдельным характеристикам хранимых артефактов, до трактовки тенденций в python-сообществе на сегодня. Нельзя обойти стороной и (как никогда!) актуальный вопрос безопасности компонентной базы и цепочки поставки в целом, поговорим про: typosquatting, dependency confusion и malware в пакетах и средствах предотвращения угрозы. Доклад рассчитан на dev, devops, devsecops, (+pm?) Слушатели: -узнают, что происходит с пайтон пакетами сегодня, интересные статистики и картиночки -получат понимание инфраструктуры пакетного индекса и сообщества, его окружающего -подкуются в базовых принципах безопасной разработки (devsecops)