Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Представим ситуацию. Перед вами важная задача — классифицировать огромный поток входящих обращений сотрудников/клиентов для дальнейшего анализа профильными сотрудниками на предмет отклонений и для построения интересующих статистик. Первое решение, приходящее в голову — в ручном режиме просматривать обращения и проводить их классификацию. Спустя пару часов, приходит осознание того, что решение было не самым правильным и так задачу не выполнить в срок. Как же тогда поступить? Именно об этом будет следующий пост.
Обычно при изучении нейронных сетей встречается много теории и новых терминов. Это усваивается сильно лучше, если некоторое время "поиграть с параметрами". Мы взяли простой широкоизвестный датасет (MNIST, изображения рукописных цифр), простую однослойную FNN (Нейронная сеть прямого распространения) и подвигали параметры в разные стороны, отмечая и сравнивая, что происходит.
Рассказываем о том, как внедряли новомодные AI-инструменты в проект. Как это повлияло на его популярность и что за этим последовало — читайте в статье.Технические особенности проекта: фреймворк — Laravel, БД — PostgreSQL, кэш/очереди — Redis, архитектура — основной кластер DigitalOcean Kubernetes и графический кластер GKE.
Понравилась статья HabraTab — девайс для хаброзависимых, где описана разработка устройства для визуализации рейтинга пользователя на Хабре.
Как упростить жизнь Django приложению.
В статье мы соберём OpenCV с поддержкой OpenVINO, а также узнаем отличия в скорости инференса модели машинного зрения на C++ и Python при прочих равных.
Ещё не успело ИИ-сообщество оправится от набега ЛЛаМ и высвобождения GPT-4, подоспела новая напасть — 19го марта была выпущена китайская нейросеть ModelScope text2video от Alibaba, создающая короткие видеоролики по текстовому описанию.
Django-приложение для гибкой фильтрации объектов модели (querysets). Скачать можно по ссылке: https://pypi.python.org/pypi/django-filter/
В ИТМО создали облачный сервис, который помогает специалистам получить доступ к возможностям машинного обучения практически без навыков программирования на Python.Для целого ряда типовых задач сервис позволяет визуально набросать пайплайн решения, импортировать в него данные, подобрать соответствующую модель машинного обучения и проверить ее качество. Эксперименты показывают, что для среднего специалиста по данным на типовых задачах инструмент ускоряет работу в 3-5 раз, позволяя в итоге выгрузить код модели на Python, чтобы вставить в сторонний проект. В этой статье рассказываем, откуда появилась идея инструмента и на какой стадии находится его разработка.
Когда речь заходит про взаимодействие микросервисов, все сразу вспоминают о сложных архитектурных паттернах, вроде Event Bus и CQRS. В этой статье я расскажу, как выполнить простенькую задачку для двух микросервисов без навороченной архитектуры. В моем случае это создание сервиса, который агрегирует события компании в единую ленту событий.
Этот блокнот познакомит вас с основами Petals — системы логического вывода и точной настройки языковых моделей с сотнями миллиардов параметров без необходимости использования высокопроизводительных GPU. С помощью Petals вы можете объединять вычислительные ресурсы с другими людьми и запускать большие языковые модели с миллиардами параметров, например BLOOM-196B или BLOOMZ того же размера, что и GPT-3.
Модуль для автоматизации тестирования web-приложений. Скачать можно по ссылке: https://pypi.python.org/pypi/selenium/
Вообще я, как правило, нормально программирую. Иногда даже такое заворачиваю, что сам тащусь весь день.Но если б я писал, какой я красавчик, то никому не было бы интересно. Поэтому сегодня — очередная партия программистских историй от меня любимого, с косяками, багами и болью. Иногда это происходило по запарке, или когда я торопился, или после нудной работы, когда мозг уже плавился, а иногда просто я тупил, потому что я человек. В общем, такие вот типичные будни кодера. Наслаждайтесь! Ну что он там опять натворил?
На этот раз злодеи зашли куда дальше, нацелившись на самих Python разработчиков. Ещё в ноябре 2022 года многие исследователи обнаружили более 400 вредоносных пакетов, загруженных в официальный репозиторий Python Package Index (PyPI).
В разработке кода мы стараемся использовать все доступные средства, для того чтобы сделать его удобным для чтения и понятным человеку. В Python множество инструментов, которые могут помочь улучшить читаемость кода, и Context manager, о котором дальше пойдет речь, один из них.