Собрали в одном месте самые важные ссылкии сделали Тренажер IT-инцидентов для DevOps/SRE
DVD – как много в этой аббревиатуре! Уверен, что вы наверняка помните такое явление, как ларьки и палатки с дисками, исчезнувшие только к началу 2010-х годов (по крайней мере так было в столице). В один из таких ларьков в конце 2009-го заглянул десятилетний я, внимание которого тут же привлекла коробка с надписью «3D Studio Max 2010»... Аниматором я, увы, так и не стал, однако интерес к области визуальных эффектов сохранился надолго.
В статье рассматриваются возможности контекстного менеджера языка Python, его роль в управлении ресурсами и обеспечении безопасного выполнения кода. Приводятся примеры использования контекстных менеджеров для работы с файлами, базами данных, потоками и сетевыми соединениями. Также обсуждается возможность создания собственных контекстных менеджеров и приводятся примеры простого и асинхронного контекстных менеджеров.
Audio
Фреймворк для работы с AMQP. Скачать можно по ссылке: https://pypi.python.org/pypi/kombu/
В предыдущей части мы частично разобрали шаблон для нашего блога, выбрали виртуальную машину и запустили на ней нативный веб-сервер Django. Однако он предназначен только для тестирования и запуска приложений во время разработки. Для обработки запросов в продакшене нужно настроить Nginx и WSGI Gunicorn. В этой статье показываем, как это сделать.
Перед тем как выпускать минимальный продукт, нужно проверить его востребованность на рынке. Как правило, наши представления о рынке не соответствуют реальности, отчего очень легко попасть в ситуацию, когда бюджет реализован, какой-то минимальный продукт готов, а трафик отсутствует. Для таких случаев и существует CustDev.
Возможно, вы прочитали название статьи и подумали, что попали на программу «В мире животных». Но нет, речь пойдет о сравнении двух гигантов аналитики данных в Python: Pandas и Polars. В этой статье мы подробно рассмотрим вопрос быстродействия этих двух решений в части работы с файлами больших объемов.
Очередной выпуск англоязычного подкаста Python Bytes
На предыдущем уроке я рассказал о своем пэт-проекте, связанном с компьютерным зрением. В этом уроке вы познакомились идей и наброском архитектуры этого пэт-проекта. Сегодня продолжу описывать, как я добавлял в проект новые классы и что из этого вышло. Напомню, что идея состояла в том, чтобы написать полноценный конвейер обработки изображений, начав с простой задачи, например, распознавание номеров. В результате эксперимента выяснилось, что известная библиотека для распознавания символов tesseract плохо распознает цифры. Было принято решение написать какую-то свою распознавалку для цифр. Но сначала надо как-то найти, где эти цифры расположены на изображении.
Дело было так: смотрел я как-то в окно и увидел, как человек сидит в машине на парковке и ждет, когда освободится парковочное место. Бывает, что и я сижу в машине и жду, когда же можно будет припарковать своего верного коня. И тут я подумал, а почему бы не подключить Компьютерное Зрение для этого? Зачем я учился разработке нейросетей, если не могу заставить компьютер работать вместо меня?
Интерактивная оболочка для языка программирования Python. Скачать можно по ссылке: https://pypi.python.org/pypi/IPython
Мощная система логгирования и платформа агрегации ошибок. Скачать можно по ссылке: https://pypi.python.org/pypi/sentry/
Недавно мы поделились с вами нашим пайплайном разработки линейных моделей для решения задач бинарной классификации. Теперь же мы решили поведать о нашем опыте построения моделей градиентного бустинга. За последнее время команда проделала колоссальную работу: мы протестировали различные методы отбора факторов, нашли новые инсайты в данных, провели интересную (а, главное, полезную!) аналитическую работу и решили несколько Ad-hoc задач.
Безопасность является важной темой в нашей современной жизни, особенно в общественных местах, таких как аэропорты, вокзалы и торговые центры. Одним из распространенных методов обеспечения безопасности является проверка сумок на проходной. Но, как говорится, кто устережёт самих сторожей? Могут ли современные технологии компьютерного зрения наблюдать за охранниками как они за нами?
Диаграммы помогают визуализировать как простые, так и самые сложные наборы данных. При этом диаграмм — множество видов, у каждого есть свои достоинства и недостатки. О наиболее эффектных и эффективных, реализуемых с Python, мы решили рассказать в сегодняшней подборке. Если вам интересна эта тема – просим под кат. А если у вас есть собственные предпочтения среди графиков (или вы используете что-то ещё), то пишите в комментариях, обсудим. Что же – поехали!