Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Рассмотрим пример простой программы на Python с помощью библотекы docx для автоматизации рабочего процесса, а именно автоматической вставки файлов (в данном случае изображений) и их подпись в документах Word (docx).Данная статья будет интересна для начинающих изучающих Python, а также полезна для тех кто работает с большими объемами изображений, графиков, осциллограмм и тому подобное. В ней мы рассмотрим простой и удобный способ вставки изображений в Word и их подписью с помощью Python.Редактирования кода займет 5 минут, выполнение программы займет 5 секунд. Вы сэкономите 300 минут работы. Я опишу свой максимально дубовый и непрофессиональный но простой код который Вы сможете повторить в своих проектах. (Полный код в низу статьи).
Компьютерное зрение — очень интересная и востребованная область искусственного интеллекта. Компьютерное зрение сейчас используется повсеместно, начиная от сегментации медицинских изображений, заканчивая управлением автомобилем. Сейчас мы коснемся одной из основных задач компьютерного зрения — обнаружения объектов.
Меня зовут Сергей Радченко, и мы с командой профессионально занимаемся тестированием уже несколько лет. Сегодня я посчитал количество автотестов, которые мы подготовили для веб-интерфейсов, десктопных приложений, API, систем двухфакторной авторизации и так далее (их оказалось более 5000). И мне захотелось рассказать о нашем опыте создания экосистемы для автоматизированного тестирования. В этом посте вы найдете описание полезных для комплексного тестирования фреймворков, а также исходный код некоторых дополнительных методов, которые мы дописали самостоятельно, чтобы написание тестов происходило быстрее, и тестирование приносило больше пользы.
Добрый день, сегодня мы развернем serverless инфраструктуру на базе AWS lambda для загрузки изображений (или любых файлов) с хранением в приватном AWS S3 bucket. Использовать мы будем terraform скрипты, залитые и доступные в моем репозитории kompotkot/hatchery на GitHub.
В этой статье я бы хотел поделиться способом написания асинхронных микросервисов на Python, общающихся друг с другом через Kafka. В основе этих микросервисов лежит библиотека потоковой обработки Faust. Но Faust - это не только работа с Kafka, он также содержит HTTP-сервер и планировщик для выполнения задач с определенным интервалом или по расписанию.
Несмотря на то, что в тестовом проекте используются такие инструменты и библиотеки, как FastAPI, Grafana, Prometheus, основная речь пойдет о Faust.
Пусть у нас есть картофель фри, котлета, хлеб, помидор, огурец и молочный коктейль. Сколько чего нужно съесть, чтобы получилось 30 гр. белка, 25 гр. жиров и 60 гр. углеводов? В прошлый раз я баловался и пытался решить это с помощью матриц, на этот раз - с помощью линейных уравнений и python библиотеки PuLP.
Наделяем наш медиацентр еще одной возможностью - управление торрент-клиентом и его загрузками из мессенджера Telegram через чат-бота. Теперь вы не будете ограничены лишь локальной домашней сетью. Управлять загрузками на домашнем сервере из любой точки мира? Легко!
Существует много проекты в которых нужно сразу видеть результат переменных в момент выполнения программы. Например обработка нажатий клавиш от пользователя, навигация между страницами в GUI приложениях, обработка данных из форм на веб проектах.
А теперь о том, что происходило в последнее время на других ресурсах.
В гостях у Moscow Python Podcast Data Scientist компании Лаборатория Касперского Дмитрий Аникин. Поговорили с Дмитрием о Python в машинном обучении, инфраструктуре моделей и многом другом.
Какое произведение киноискусства оставило самый большой отпечаток в современной поп культуре? Предлагаю подумать над этим вопросом некоторое время. Может быть это Апокалипсис сегодня? Или Крестный отец? А вдруг главный фильм всех времен и народов это шедевр отечественного кинематографа - фильм Викинг?