Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Давайте разберемся на примере. Скажем, я хочу спрогнозировать зарплату специалиста по данным на основе количества лет опыта. Итак, моя целевая переменная (Y) — это зарплата, а независимая переменная (X) — опыт. У меня есть случайные данные по X и Y, и мы будем использовать линейную регрессию для прогнозирования заработной платы. Давайте использовать pandas и scikit-learn для загрузки данных и создания линейной модели.
Модуль http.cookies реализует парсер для cookie, по большей части совместимый с RFC 2109 — документом со стандартами работы с cookie и смежными вещами.
Лекция для Школы бэкенд-разработки Яндекса. Лето 2021.
Это правда, что слово «legacy» подчас может пугать и наводить уныние. Однако не стоит забывать, что наследие наследию всё же рознь. Давайте определимся, что такое наследие, разберёмся каким оно бывает и поймём, как с ним можно жить.
Многие знакомы с методологией Test-Driven Development и, в частности, Behavior-Driven Development. Этот подход к разработке и обеспечению качества ПО набрал большую популярность, поскольку позволяет выстроить четко установленное соответствие между бизнес-требованиями и технической реализацией продукта.
Сериализация и десериализация данных — это преобразование между необработанной структурой данных и экземплярами классов для их хранения и передачи. Например, преобразование объектов Python в JSON-представление. Мы рассмотрим две популярные Python-библиотеки Marshmallow и Pydantic, которые помогут нам справиться как с преобразованием, так и с валидацией данных. Сначала я представлю вам каждую библиотеку, используя небольшие примеры, а потом мы сравним их и разберем различия. Я также расскажу, чего вам стоит избегать при работе с обеими библиотеками.
Новый язык программирования от Open AI, рост популярности диффузионных моделей, чат-бот с памятью не как у золотой рыбки — об этом и многом другом в июльском выпуске.
Одним из недостатков гибких языков, таких как Python, является предположение, что если что-то работает, то скорее всего оно сделано правильно. Я хочу написать скромное руководство по эффективному использованию исключений в Python, правильной их обработке и логировании.
Этот пост предназначен в первую очередь для новичков в разработке, впервые столкнувшихся с необходимостью отправить post/get запросы к какому-нибудь API и проанализировать полученный в XML ответ. Постаралась собрать необходимы минимум в одном месте.
В статье поговорим как обучить несложную CNN сеть с помощью tensorflow, конвертировать готовое с помощью tensoflow-lite и перенести на мобильное устройство под управлением android.
Описывается личный опыт автора, поэтому нет претензий на всеохватывающее руководство.
Изучение основ Python — прекрасный опыт. Но эйфория от изучения языка постепенно заменяется желанием создать что-то своими руками. И это нормально, но нужны идеи.
Проблема здесь в том, что некоторые проекты либо слишком просты, либо слишком сложны для разработчика среднего уровня. Эта статья — помощь программисту уровня intermediate. Она предоставляет несколько идей проектов, которые могут стать интересным вызовом для вас.
В начале ноября на ютуб-канале Яндекс.Практикума прошли дебаты «Микросервисы, Монолит и Зомби». Ведущие дебатов — наставник курса «Мидл Python-разработчик» Руслан Юлдашев и техлид курса Савва Демиденко — разобрали архитектуры двух систем, прошлись по реальным задачам и ошибкам из своей рабочей практики и по очереди защищали свои позиции.