Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Под динамическим определением объекта можно понимать определение во время исполнения. В отличие от статического определения, которое используется в привычном определении класса с помощью ключевого слова class, динамическое определение использует встроенный класс type.
Поговорили о плюсах и минусах микросервисной и монолитной архитектуры, а также обсудили технологии и навыки, необходимые разработчику, помимо знания Python.
Cегодня мы будем разбираться с алгоритмом сжатия JPEG. Многие не знают, что JPEG — это не столько формат, сколько алгоритм. Большинство JPEG-изображений, которые вы видите, представлены в формате JFIF (JPEG File Interchange Format), внутри которого применяется алгоритм сжатия JPEG. К концу статьи вы будете гораздо лучше понимать, как этот алгоритм сжимает данные и как написать код распаковки на Python. Мы не будем рассматривать все нюансы формата JPEG (например, прогрессивное сканирование), а поговорим только о базовых возможностях формата, пока будем писать свой декодер.
Мы публикуем конспект вступительной лекции видеокурса «Бэкенд-разработка на Python». В ней Егор Овчаренко egorovcharenko, тимлид в Яндекс.Такси, рассказал о внутреннем устройстве интерпретатора CPython.
Как-то во время чтения книги «Reinforcement Learning: An Introduction» я задумался над дополнением своих теоретических знаний практическими, однако решать очередную задачу балансировки бруска, учить агента играть в шахматы или же изобретать другой велосипед желания не было.
При этом в книге был один интересный пример на оптимизацию очереди клиентов, который с одной стороны не слишком сложен в плане реализации/понимания процесса, а с другой — вполне интересный и может быть с тем или иным успехом внедрен в реальную жизнь.
Немного изменив данный пример, я и пришел к той идее, о которой далее и пойдет речь.
Nim — это сочетание синтаксиса Python и производительности C.
Несколько недель назад я бродил по GitHub и наткнулся на любопытный репозиторий: проект был полностью написан на языке Nim. До этого я с ним не сталкивался, и в этот раз решил разобраться, что это за зверь.
Нынче важнейшим вектором развития многих компаний является цифровизация. И почти всегда она так или иначе связана с машинным обучением, а значит, с моделями, для которых нужно считать признаки.
Можно делать это вручную, но также для этого существуют фреймворки и библиотеки, ускоряющие и упрощающие этот процесс.
Об одной из них, featuretools, а также о практическом опыте ее использования мы сегодня и поговорим.
В этой статье будет рассказан опыт создания нейросети по распознаванию лиц, для сортировки всех фотографий из беседы ВК на поиск определённого человека. Без какого-либо опыта написания нейросетей и минимальными знаниями Python.
На тот момент вся компания занималась глобальным редизайном всего продукта, и нам были озвучены следующие требования:
Пошаговая инструкция по построению Flask приложения следуя принципу dependency injection.
В наше время голосовые роботы набирают огромную популярность, от банального заказа такси, до продаж клиентам. Создание голосового бота сводится к трем базовым этапам.
О какой медали идет речь в заголовке? Речь идет об инфраструктуре открытых ключей (Public Key Infrastructure — PKI/ИОК) на базе стандартов криптографии с открытым ключом (Public Key Cryptography Standards — PKCS).