Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Мы уже рассказывали о платформе LEGO MINDSTORMS Education EV3. Основные задачи этой платформы — обучение на практических примерах, развитие навыков STEAM и формирование инженерного мышления. В ней можно проводить лабораторные работы по изучению механики и динамики. Лабораторные стенды из кубиков LEGO и утилиты по регистрации и обработке данных делают опыты еще интереснее и нагляднее и помогают детям лучше понять физику. Например, школьники могут собрать данные о температуре плавления и с помощью приложения систематизировать их и представить в виде графика. Но это только начало: сегодня мы расскажем, как дополнить этот набор средой программирования MicroPython и использовать его для обучения робототехнике.
В предыдущей статье я рассказал про нашу систему поиска похожих заявок. После ее запуска мы стали получать первые отзывы. Какие-то рекомендации аналитикам нравились и были полезны, какие-то — нет.
Для того, чтобы двигаться дальше и находить более качественные модели, необходимо было сначала оценить работу текущей модели. Также необходимо было выбрать критерии, по которым две модели можно было бы сравнить между собой.
Command-line interface and makes possible automatic spec-based tests for Open API / Swagger based apps
Сегодня публикуем вторую часть перевода материала, посвящённого статическому анализу больших объёмов серверного Python-кода в Instagram.
В России одна известная организация под названием ВЦИОМ проводила социологическое исследование, на котором гражданам предлагали ответить на вопрос: «Согласны ли вы со следующим утверждением: Солнце вращается вокруг Земли?» Данные этого опроса многократно перепечатываются в СМИ, и на различных сетевых ресурсах в комментариях часто ссылаются на него при обсуждении различных общественно-политических проблем.
Мы просмотрели и сравнили 10 000 open source библиотек для Python и выбрали 34 самые полезные. Мы сгруппировали эти библиотеки в 8 категорий.
Серверный код в Instagram пишут исключительно на Python. Ну, в основном это именно так. Мы используем немного Cython, а в состав зависимостей входит немало C++-кода, с которым можно работать из Python как с C-расширениями.
В этой статье я не буду рассказывать о новых фичах генератора парсера — я достаточно описал его в предыдущих частях. Вместо этого хочу рассказать что я делал на Core Developer Sprint на прошлой неделе, прежде чем всё сотрётся из моей памяти. Хотя большая часть материала так или иначе всё равно касается PEG. Так что мне придётся показать некоторый код, который задаёт направление в реализации PEG-парсера для Python 3.9.
model_cached_property - это декоратор для кэширования свойств объектов моделей данных в Django. Данный декоратор позволяет кэшировать свойства объектов моделей в зависимости от входных параметров на заданный период времени. В статье описываются варианты применения, а также ограничения декоратора.
А теперь о том, что происходило в последнее время на других ресурсах.
Вначале была эта статья. Потом к ней появился комментарий. А в результате я углубился в чтение матчасти, закопался в дебаг и смог оптимизировать код из первой части этой истории. Предлагаю вместе со мной пройтись по основным моментам.
Для начала хочу поблагодарить Mogost. Благодаря его комментарию я пересмотрел подход к Пайтону. Я и ранее слыхал о том, что среди пайтонистов достаточно много неэкономных ребят (при обращении с памятью), а теперь выяснилось, что я как-то незаметно для себя присоединился к этой тусовке.