Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Привет от ODS. Мы откликнулись на идею tutu.ru поработать с их датасетом пассажиропотока РФ. И если в посте Milfgard огромная таблица выводов и научпоп, то мы хотим рассказать что под капотом.
Что, опять очередной пост про COVID-19? Да, но нет. Нам это было интересно именно с точки зрения математических методов и работы с интересным набором данных.
Скользящее окно (Moving Windows)
В заголовке я привел дословный перевод. Если кто меня поправит, и другой термин более применим — то спасибо.
Смысл скользящего окна– с каждым новым значением функция пересчитывается за заданный период времени. Этих функций большое количество. Для примера: rolling.mean(), rolling.std(), которые чаще всего и используют при анализе движения акций. rolling.mean() — это обычная скользящая средняя, которая сглаживает краткосрочные колебания и позволяет визуализировать общую тенденцию.
Давайте представим, что нам нужно запустить футбольный мяч на орбиту Земли. Никакие ракеты не нужны! Хватит горы, высотой 100 километров и недюжинной силы. Но насколько сильно нужно пнуть мяч, чтобы он никогда больше не вернулся на Землю? Как отправить мяч в путешествие к звёздам, имея только грубую силу и знание небесной механики?
Python, хоть и мощный, но всего лишь инструмент, который позволяет писать выразительный самодокументируемый код, но не гарантирует этого, как не гарантирует этого и соблюдение PEP8. Когда наш, казалось бы, простой интернет-магазин на Django начинает приносить деньги и, как следствие, накачиваться фичами, в один прекрасный момент мы понимаем, что он не такой уж и простой, а внесение даже элементарных изменений требует все больших и больших усилий, а главное, что эта тенденция все нарастает. Что случилось, и когда все пошло не так?
В гостях у Moscow Python Podcast Андрей Гаврилов, Big Data Python developer в EPAM. Поговорили о сложностях связанных с распределенными вычислениями в Big Data и Data science
Сейчас программирование все глубже и глубже проникает во все сферы жизни. А возможно это стало благодаря очень популярному сейчас python’у. Если еще лет 5 назад для анализа данных приходилось использовать целый пакет различных инструментов: C# для выгрузки (или ручки), Excel, MatLab, SQL, и постоянно “прыгать” туда сюда вычищая, сверяя и выверяя данные. То сейчас python, благодаря огромному количеству прекрасных библиотек и модулей, в первом приближении благополучно заменяет все эти инструменты, а в связке с SQL так вообще “горы свернуть можно”.
Будучи одним из самых популярных языков 21-го века, Python, безусловно, обладает множеством интересных функций, которые стоит изучить подробно. Три из них будут рассмотрены сегодня, каждая — теоретически, а потом и на практических примерах.
В процессе подготовки к курсу «Основы компиляторов» для студентов 4-го курса я изучал различные эзотерические языки программирования. Вот хорошая статья на эту тему. В статье самым интересным мне показался язык Befunge (Крис Пресс, 1993 год), особо отмечу три его особенности
В этой статье я покажу как решить одну из проблем, возникающих при использовании распределенных очередей задач — регулирование пропускной способности очереди, или же, более простым языком, настройка ее rate limit'a. В качестве примера я возьму python и свою любимую связку Celery+RabbitMQ, хотя алгоритм, который я использую, никак не зависит от этих инструментов и может быть реализован на любом другом стэке.
Репозиторий моделей Open Model Zoo библиотеки OpenVINO содержит много самых разных глубоких нейронных сетей из области компьютерного зрения (и не только). Но нам пока не встретилось GAN моделей, которые генерировали бы новые данные из шума. В этой статье мы создадим такую модель в Keras и запустим ее в OpenVINO.