Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Недавно прошло соревнование от Тинькофф и McKinsey. Конкурс проходил в два этапа: первый — отборочный, в kaggle формате, т.е. отсылаешь предсказания — получаешь оценку качества предсказания; побеждает тот, у кого лучше оценка. Второй — онсайт хакатон в Москве, на который проходит топ 20 команд первого этапа. В этой статье я расскажу об отборочном этапе, где мне удалось занять первое место и выиграть макбук. Команда на лидерборде называлась "дети Лёши".
Выстраивание коммуникаций между брендами и людьми — то, чем мы в Dentsu Aegis Network занимаемся каждый день, и неотъемлемой частью этой работы является анализ данных. В ряде случаев этот процесс не требует data science (хотя и он у нас есть), тогда мы используем BI платформу Tableau. Ее основная цель — дать нашим сотрудникам и клиентам удобный интерфейс для потребления данных без написания скриптов, SQL запросов и т.п.
В этой статье мы расскажем, как нам удалось решить проблему взаимодействия Tableau с ClickHouse.
Небольшой модуль для работы с массивами в Python без использования сторонних библиотек (клон NumPy, но только на чистом Python).
Домашним заданием в университете задали написать программу, которая вычисляет нормы и разложения матрицы, но запретили использовать сторонние библиотеки. В выборе языка программирования не ограничивали. Я выбрал python (что было ошибкой, т.к. он намного медленнее Java и C/C++) и соответственно мне нельзя использовать NumPy. В процессе пришлось написать функции выполнения операций с массивами, функции нахождения миноров, определителя и тд. В итоге получилась мини библиотека для работы с массивами.
Мой код, написанный на чистом питоне намного медленнее NumPy, который производит вычисления на C и Fortran (плюс мой код не оптимизирован).
Бывает смотришь фильм, и в голове только один вопрос – «я что опять попался на кликбейт?». Решим эту проблему и будем смотреть только годное кино. Предлагаю немного поэкспериментировать с данными и написать простую нейросеть для оценки фильма.
В основе нашего эксперимента лежит технология сентимент-анализа для определения настроения аудитории к какому-либо продукту. В качестве данных берем датасет обзоров пользователей на фильмы IMDb. Среда разработки Google Colab позволит быстро обучать нейросеть благодаря бесплатному доступу к GPU (NVidia Tesla K80).
На основе одного из вопросов на форуме я написал пример по использованию QThread в PyQt5, а также использование метода moveToThread для перемещения объекта класса наследованного QObject в другой поток.
В данном примере производится выполнение некоего алгоритма, которые через сигнал возвращает текст, а также цвет текст в главный GUI. Эти данные добавляются в QTextBrowser с установкой цвета.
Создать классный проект с машинным обучением – это одно дело, другое дело, когда вам нужно, чтобы другие люди тоже смогли его увидеть. Конечно, вы можете положить весь проект на GitHub, но как ваши бабушка с дедушкой поймут, что вы сделали? Нет, нам нужно развернуть нашу модель глубокого обучения в виде веб-приложения, которое будет доступно любому человеку в мире.
О том, как спрятать исходные коды пакета.
Все началось с увлечения глубоким обучением, нейронными сетями и далее по списку. Я посмотрел пару курсов, поучаствовал в соревновании на Kaggle… "чем бы еще заняться?". Тут мимо как раз по своим делам проползал робот-пылесос (Xiaomi Vacuum Cleaner V1) и подкинул интересную идею…