Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Конфиги. Все хранят их по разному. Кто-то в .yaml, кто-то в .ini, а кто-то вообще в исходном коде, подумав, что "Путь Django" с его settings.py действительно хорош.
В этой статье, я хочу попробовать найти идеальный (вероятнее всего) способ хранения и использования конфигурационных файлов в Python. Ну, а также поделиться своей библиотекой для них :)
В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.
Мы всегда хотим писать код быстро, но за это приходится платить. На обычных высокоуровневых гибких языках можно быстро разрабатывать программы, но после запуска они работают медленно. Например, чудовищно медленно cчитать что-то тяжелое на чистом Python. Си-подобные языки работают гораздо быстрее, но в них легче наделать ошибок, поиск которых сведет весь выигрыш в скорости на нет.
Обычно эта дилемма решается так: сначала пишут прототип на чем-то гибком, например, на Python или R, а потом переписывают на C/C++ или Fortran. Но этот цикл слишком длинный, можно ли обойтись без этого?
Изученая возможности MicroPython для своих целей натолкнулся на одну из реализаций библиотеки asyncio и, после недолгой переписки с Piter Hinch — автором библиотеки, понял, что мне необходимо глубже разобраться с принципами, базовыми понятиями и типичными ошибками использования методов асинхронного программирования. Тем более, что раздел для начинающих — как раз для меня.
Это руководство предназначено для пользователей, имеющих разный уровень опыта работы с asyncio, в том числе содержит специальный раздел для начинающих.
В этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Как это бывает, решил изучить новые технологии 3д печати и купил себе 3D SLA принтер Photon, но его софт а именно слайсер оставляет желать лучшего, очень уж он слабоват. Нет контроля заполнения, поддержки плохо управляются и т.п… В общем решил я это дело обойти с помощью Cura, просто решил что может сработать и можно заюзать его… Поискал в сети описание формата Photon, он оказался довольно простым… И вот что из этого вышло
Перевод главы 13 Параллелизм
из книги ‘Expert Python Programming’,
Second Edition
Michał Jaworski & Tarek Ziadé, 2016