Собрали в одном месте самые важные ссылки
читайте авторский блог
Данная статья будет интересна начинающим python-программистам, которые интересуются управлением своим капиталом. Ну а кому-то данный инструмент может пригодиться для самостоятельного построения подобных стратегий. Но будьте аккуратны, брокеры пишут, что это не каждому под силу.
Может показаться странным, но довольно часто люди, использующие uWSGI, даже не подозревают, с чем имеют дело в действительности. Для многих это — лишь прослойка между веб-сервером и приложением. Управление процессами и фоновыми задачами, мониторинг, кластеризация и балансировка нагрузки — вот лишь некоторые области, в которых uWSGI может помочь. О них и не только о них мы поговорим. Добро пожаловать на краткий обзор основных подсистем uWSGI.
Отец-айтишник визуализировал данные о сне и бодрствовании первого года жизни своего сына. Сделал это своими руками — программно обработал данные и связал одеялко, которое показывает активность его малыша за год.
К сожалению, в Python-сообществе нет универсального понятия «хорошей архитектуры», есть только понятие «питоничности», поэтому архитектуру приходится придумывать самим. Под катом — лонгрид с размышлениями об архитектуре и в первую очередь — об управлении зависимостями применимо к Python.
Асинхронный Python разрабатывался много лет, и в экосистеме Django мы экспериментировали с ним в Channels с ориентацией в первую очередь на поддержку вебсокетов.
По мере развития экосистемы стало очевидно, что, хотя нет насущной необходимости расширять Django для поддержки отличных от HTTP протоколов, таких как вебсокеты, поддержка асинхронности даст много преимуществ для традиционной model-view-template структуры Django.
Для тебя уже не является новостью тот факт, что все на себе попробовали маски старения через приложение Face App. В свою очередь для компьютерного зрения есть задачи и поинтереснее этой. Ниже представлю 8 шагов, которые помогут освоить принципы компьютерного зрения.
Работа с данными — работа с алгоритмами обработки данных.
И мне приходилось работать с самыми разнообразными на ежедневной основе, так что я решил составить список наиболее востребованных в серии публикаций.
Эта статья посвящена наиболее распространённым способам сэмплинга при работе с данными.
Беглый опрос коллег на моем текущем проекте показал, что при словах "ORM и работа с БД" в подавляющем большинстве случаев звучат слова "Алхимия" и "Django ORM". Знания этих двух слов, в общем, достаточно, чтобы писать чистый, аккуратный и рабочий код. Но расширение инженерного кругозора пока еще никому не вредило, поэтому сегодня мы добавим в нашу картину мира несколько (возможно, до этого дня незнакомых) классных штук для работы с БД.
Общеизвестно, что Python — язык универсальный. Но он эволюционирует, меняются и тренды в разработке — и не всегда понятно, для чего наиболее пригодны сегодня Python и экосистема вокруг него. Много ли задач, для решения которых он посредственный выбор? Какие архитектурные особенности это предопределяют? В какую сторону лучше развивать язык?
Есть шансы, что на смену простому pgen придёт нечто более хитрое