Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Продолжение цикла статей о создании небольшого робота. В этот раз речь пойдет о создании копии робота в симуляции, которую предлагают визуальные ROS-среды rviz и gazebo (далее «редакторы»). Работа в редакторах будет вестись на виртуальной машине, образ которой был ранее предоставлен для скачивания (образ). Так как речь идет о симуляции, построении модели, сам робот-тележка не понадобится.
В гостях Михаил Новиков, CTO компании FastTrack. Вместе с ним мы разбираемся, что такое serverless, какие у него есть альтернативы, в каких сценариях разработки он применим, чему нужно уделять внимание при его внедрении.
Обработка естественного языка (NLP) является популярной и важной областью машинного обучения. В данном хабре я опишу свой первый проект, связанный с анализом эмоциональной окраски кино отзывов, написанный на Python. Задача сентиментного анализа является довольно распространенной среди тех, кто желает освоить базовые концепции NLP, и может стать аналогом 'Hello world' в этой области.
В этой статье мы пройдем все основные этапы процесса Data Science: от создания собственного датасета, его обработки и извлечения признаков с помощью библиотеки NLTK и наконец обучения и настройки модели с помощью scikit-learn. Сама задача состоит в классификации отзывов на три класса: негативные, нейтральные и позитивные.