Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Злата Обуховская (Teamlead в Nvidia, евангелист MoscowPython)
"В этой части докладов про внутренности питона мы посмотрим, как происходит выделение памяти, как работают счетчики ссылок, кэши объектов и сборка мусора, а также разберемся, причем тут GIL".
Слайды: http://www.moscowpython.ru/meetup/63/python-memory/
Цикл "Что внутри у Питона": https://www.youtube.com/playlist?list=PLv_zOGKKxVpi6BSAuySAtX5KyCa50PSCz
В данный момент занимаюсь задачей стриминга (и преобразования) данных. В некоторых кругах
такой процесс известен как ETL, т.е. извлечение, преобразование и загрузка информации.
Весь процесс включает в себя участие следующих сервисов Google Cloud Platform:
В первой части статьи я описал основы использования аннотаций типов. Однако несколько важных моментов остались не рассмотрены. Во-первых, дженерики — важный механизм, во-вторых иногда может оказаться полезным узнать информацию об ожидаемых типах в рантайме. Но начать хотелось с более простых вещей
Поделюсь рассказом о небольшом проекте: как найти в комментариях ответы автора, заведомо не зная кто автор поста.
Свой проект я начинал с минимальными знаниями по машинному обучению и думаю для специалистов тут не будет ничего нового. Этот материал в некотором смысле компиляция разных статей, в нем расскажу, как подходил к задаче, в коде можно найти полезные мелочи и приемы с обработкой естественного языка.
Когда летом 2017 года мы запускали платформу, то задумались о том, как принимать криптовалюты и какой процессинг использовать. Увы, никто на тот момент не был готов дать хоть какие-либо гарантии по уязвимости контракта, да и история с атакой платформы DAO была еще на слуху. Мы не хотели идти по стопам DAO. К тому же, у нас были некоторые наработки по приему платежей через блокчейн. Так что мы решили самостоятельно проработать весь цикл проведения блокчейн-платежей. В этом посте мы расскажем о том, что у нас получилось, и, что самое интересное, — о том, какие проблемы нам пришлось решить в процессе.
Про создание и обучение моделей нейронных сетей (навыков) на Хабре написано не мало, поэтому не будем об этом сегодня. Обучив или получив сериализованные навыки ИИ, мы рассчитываем использовать их в наших целевых информационных системах, и тут возникает проблема. То что работает на стенде в лаборатории не перенести в производство в исходном виде, необходимо внедрение всего сопряженного стека технологий и даже существенная доработка под целевую платформу (есть, конечно, исключения в виде CoreML, но это частный случай и только для техники Apple). К тому же, инструментов разработки и сериализации моделей великое множество, неужели для каждого придется разрабатывать отдельное решение для интеграции? Кроме того, даже в лаборатории часто возникает необходимость получить быстрый вывод от модели, не ожидая прогрузки всего связанного девелоперского стека.
В качестве предложения по решению данных проблем я хотел бы рассказать про сравнительно новый opensource инструмент, который, возможно, будет вам полезен при разработке проектов, связанных с ИИ.
Задумывались ли вы когда-нибудь о том, как данные, с которыми вы работаете, выглядят в недрах Python? О том, как переменные создаются и хранятся в памяти? О том, как и когда они удаляются? Материал, перевод которого мы публикуем, посвящён исследованиям глубин Python, в ходе которых мы попытаемся выяснить особенности управления памятью в этом языке. Изучив эту статью, вы разберётесь с тем, как работают низкоуровневые механизмы компьютеров, в особенности те из них, которые связаны с памятью. Вы поймёте то, как Python абстрагирует низкоуровневые операции и познакомитесь с тем, как он управляет памятью.