Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Важнейшей задачей автоматического управления любыми технологическими процессами является разработка математического описания, расчет и анализ динамики автоматических систем регулирования (АСР).
Практика промышленного использования микропроцессорных регулирующих приборов (МРП) показала, что “идеальные алгоритмы” физически не реализуемы. Синтезированная на их основе АСР не отражает поведение реальной системы [1].
С тех пор, как я посмотрел легендарное видео Wat Гэри Бернхардта, меня завораживает странное поведение некоторых языков программирования. Некоторые из них таят больше сюрпризов, чем другие. Например, для Java написана целая книга с описанием пограничных ситуаций и странной специфики. Для C++ вы просто можете почитать сами спецификации всего за $200.
Далее поделюсь с вами моей коллекцией самых неожиданных, забавных и всё-таки валидных «заклинаний» программирования. По сути, использование этих особенностей поведения ЯП считается пагубным, поскольку ваш код никоим образом не должен быть непредсказуемым. Хорошо, что многие линтеры уже осведомлены и готовы посмеяться над вами, если попробуете какое-то из перечисленных дурачеств. Но как говорится, знание — сила, так что начнём.
Эта статья — небольшая заметка о реализации алгоритма q-learning для управления агентом в стохастическом окружении. Первая часть статьи будет посвящена созданию окружения для проведения симуляций — мини-игр на поле nxn, в которых агент должен как можно дольше продержаться на удалении от противников, движущихся случайным образом. Задача противников, соответственно, его настигнуть. Очки начисляются за каждый ход, проведенный агентом в симуляции. Вторая часть статьи затронет основы q-learning алгоритма и его имплементацию. В третьей части попробуем поменять параметры, которые определяют восприятие окружения агентом. Проанализируем влияние этих параметров на результативность его игры. Акцент я специально сместил в сторону использования минимального количества сторонних модулей. Цель — прикоснуться к самой сути алгоритма, так сказать потрогать руками. Для реализации будем использовать только «pure» python 3.
Толстые модели (fat models), тонкие представления (thin views), тупые шаблоны (stupid templates) - один из распространенных подходов к структурированию Django приложений. Цель подхода - вынести бизнес логику из представлений и шаблонов, и поместить ее в модели. Очевидно, что представления и шаблоны не должны содержать бизнес логику, так как они имеют совсем другие обязанности. Но выносить логику в модели не лучший вариант. Это приводит к тому, что модели становятся слишком большими и имеют слишком много обязанностей. Получаются так называемые объекты боги (god objects). Из-за их сложности код сложно понять, тестировать и поддерживать.
В Сети много тюториалов и видеолекций, и других материалов обсуждающих
основные принципы, архитектуру, стратегии обучения и т.д. Традиционно, обучение нейронных сетей производится путем предявления нейронной сети пакетов
изображений из обучающей выборки и коррекции коэффициентов этой сети
методом обратного распространения ошибки. Одним из
наиболее популярных инструментов для работы с нейронными сетями является
библиотека Tensorflow от Google.
На этой неделе я сделал мой первый pull-request в основной проект CPython. Его отклонили :-( Но чтобы не тратить полностью свое время, я поделюсь своими выводами о том, как работает CPython и покажу вам как легко изменить синтаксис Python.
Я собираюсь показать вам как добавить новую фичу в синтаксис Python. Эта фича — оператор инкремента/декремента, стандартный оператор для большинства языков. Чтобы убедиться — откройте REPL и попробуйте:
Как же называется процесс записи в журнал событий?
Нам кажется очень важным способствовать тому, чтобы начинающие (и не только) разработчики узнавали о самых крутых технологиях на рынке. Поэтому мы делаем целый пул образовательных онлайн-проектов в партнёрстве с лучшими площадками. Подробно о них рассказываю под катом, там же раскрываю наши планы на будущее.
Google's Text-To-Speech + Python