Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Введение в web scraping на Python. Извлекае описания работ с Indeed.com силами Urllib и BeautifulSoup
Слайды: https://speakerdeck.com/9seconds/daemonize
Небольшой рассказ о том, как правильно демонизировались процессы до прихода systemd.
Слайды: https://nikiladonya.github.io/#/4
Небольшой обзор gRPC как дополнение к докладу про Protocol Buffers.
Слайды: https://www.slideshare.net/AleksandrMokrov/protobuf-it
Поговорим о том, что за зверь этот Protocol Buffers и зачем он вообще нужен. Рассмотрим где он может быть полезен, что может дать и с какими проблемами может познакомить. Посравниваем с конкурентами.
Слайды: https://proofit404.github.io/talks/graphql-is-coming/slides/
Уже очень давно стандартом де-факто для дизайна web API стал REST. Но вот GitHub и Facebook анонсировали поддержку GraphQL API. Зачем они это сделали? Стоит ли нам сделать тоже самое? Какие инструменты для этого предоставляет экосистема Python? Хорошо ли они спроектированы? REST уже всё? Ответы на эти вопросы и не только вы узнаете из моего доклада.
Слайды: https://speakerdeck.com/9seconds/own-mustache
Давайте просто возьмем и напишем свой игрушечный шаблонизатор Curly, который функционально примерно равен Mustache за 40 минут. За эти 40 минут я попытаюсь рассказать все-все детали так, чтобы люди, которые умеют строить регулярные выражения, поняли бы, как реализуются такие шаблонизаторы в принципе.
Сегодняшняя статья будет посвящена сравнению моделей работы с иерархическими данными в PostgreSQL, через Django приложение. В статья я специально не использую чистую реализацию в базе данных, т. к. меня интересует именно производительность в среде, приближенной к боевой.