Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Всегда приятно осознавать, что применение технологий сводится не только к финансовой выгоде, бывают ещё и идеи, делающие мир лучше. Об одном из проектов с такой идеей мы и расскажем в этот морозный пятничный день. Вы узнаете о решении, которое позволило увеличить точность экспресс-анализа крови, с помощью применения алгоритмов машинного обучения для выявления связей между микро-РНК и генами. Также, стоит отметить, что методы, описанные ниже можно использовать не только в биологии.
Очень часто можно увидеть вопросы на том же тостере: «А какую книгу взять книгу, чтобы выучить технологи Х», и естественно в комментариях идет большое число мнений и большое число различных книг. В данной теме, я сделаю обзор самых популярных книг по Python для начинающих программистов, и дам четкое мнение – нужно ли их читать или нет (субъективно).
Нужно ли читать книги. Изучая новые технологии, я люблю читать книги по данной технологии, так как я получаю не только сухую информацию, но и субъективное мнение автора по пригодности данных технологий. И в отличие от видео-курсов, мне не приходится ждать, пока автор из себя выдавливает мысль. Да и читаю, я быстро.
Аудио-подкаст
Демо в репозитории
Пример приложения
Просматривая свои заметки по проектированию GUI с использованием виджетов Tk, я почувствовал какую-то неудовлетворенность. А дело оказалось в том, что я фактически упустил работу с тематическими виджетами ttk (themed tk). Они в скользь были задействованы при рассмотрении пакета Tkinter для Python и использовании дизайнера Page . Там речь шла о виджете TNotebook (блокнот, записная книжка) из пакета ttk.
Не так давно столкнулся с проблемой поиска набора слов в большом тексте. Разумеется главной проблемой стала производительность. Поиск готовых решений порождал больше вопросов, чем давал ответов. Часто я натыкался на примеры использования каких-то сторонних коробок или онлайн-сервисов. А мне в первую очередь нужно было простое и легкое решение, которое в дальнейшем дало бы мысли для реализации собственной утилиты.
Несколько недель назад вышла замечательная англоязычная статься об open-source python-библиотеки FlashText. Эта библиотека предоставляла быстрое работающее решение задачи поиска и замены ключевых слов в тексте.
Т.к. на русском материалов подобной тематики не так много, то я решил перевести эту статью на русский. Под катом вас ждет описание проблемы, разбор принципа работы библиотеки а так же примеры тестов производительности.