Собрали в одном месте самые важные ссылки
и сделали Тренажер IT-инцидентов для DevOps/SRE
Однажды томным вечером, сидя напротив мелькающей ленты tjournal и попивая ромашковый чай, внезапно обнаружил себя за чтением статьи про советскую лампочку, которая освещала чей-то подъезд уже 80 лет. Да, весьма интересно, но все же я предпочитаю статьи про политику достижения ИИ в игре дум, приключения ракет SpaceX и, в конце концов, — с наибольшим кол-вом просмотров. А какие вообще статьи набирают внушительные рейтинги? Посты размером с твит про какую-то политическую акцию или же талмуды с детальным анализом российской киноиндустрии? Ну что же, тогда самое время расчехлять свой Jupyter notebook и выводить формулу идеальной статьи.
Работает с Flask приложениями
Статья описывает как можно модифицировать Python
Длинный туториал об Deep Learning
Короткая статья об основных понятиях Django сигналов
Чат-боты стали уже очень распространенным явлением, и появляются во всех мессенджерах ежедневно.
В этой статье по шагам разберем создание бота с набором простых команд и узнаем, как в дальнейшем можно расширить его функционал. Статья будет полезна для самых новичков, которые никогда не пробовали создавать чат-ботов.
В прошлый раз мы получили ускорение в среднем в 2,5 раза без изменения подхода. В этот раз я покажу, как применять SIMD-подход и получить ускорение еще в 3,5 раза. Конечно, применение SIMD для обработки графики не является ноу-хау, можно даже сказать, что SIMD был придуман для этого. Но на практике очень мало разработчиков используют его даже в задачах обработки изображений. Например, довольно известные и распространенные библиотеки ImageMagick и LibGD написаны без использования SIMD. Отчасти так происходит потому, что SIMD-подход объективно сложнее и не кроссплатформенный, а отчасти потому, что по нему мало информации. Довольно просто найти азы, но мало детальных материалов и разбора реальных задач. От этого на Stack Overflow очень много вопросов буквально о каждой мелочи: как загрузить данные, как распаковать, запаковать. Видно, что всем приходится набивать шишки самостоятельно.
Выпускник курсов Learn Python Юрий Половинкин рассказал о том, зачем он записался на курсы и что из этого получилось.