Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Существует популярный подход к покрытию метриками Celery: он заключается в запуске некоторого процесса, который слушает события из специальной очереди, на основе этих событий обновляются объекты метрик, а фоновый поток сервера отдаёт собранные метрики скраперу. В этой статье подробно разберём события, их жизненный цикл, откуда и как их принимать. Также поговорим про механизм удалённого управления (remote control), какие у него есть возможности и как им пользоваться. Обсудим существующие решения, чем они отличаются, и почему вам, возможно, будет выгодно сделать своё.
Как всегда вас жду доклады записанные в студии, а так же новый формат проведения прямого эфира из студии в Москве. Ведущий, спикеры и приглашенные эксперты с нетерпением ждут вашего участия в обсуждении. А вы, наши дорогие онлайн телезрители, сможете задать свои вопросы и высказать свое мнение!
Шестая статья нашего цикла про языки программирования посвящена Python. В обзоре вы найдёте особенности, плюсы и минусы Python, сферы его применения и полезные ссылки для обучения.
Сегодняшняя статья будет интересна тем, кто хочет собрать простой OLAP‑куб для анализа данных, чтобы понять, как он устроен и работает. Экспериментировать будем с помощью TinyOLAP, одного из немногих OpenSource движков на Python.
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
Python генератор документации. Скачать можно по ссылке: https://pypi.python.org/pypi/Sphinx/
Распределенная очередь задач. Скачать можно по ссылке: https://pypi.python.org/pypi/celery/
WSGI HTTP-сервер для UNIX. Скачать можно по ссылке: https://pypi.python.org/pypi/gunicorn/
http клиент/сервер для asyncio. Скачать можно по ссылке: https://pypi.python.org/pypi/aiohttp
Пока люди с самыми малыми вычислительными машинами в пустую тратят время на перебор гиперпараметров внутри библиотеки Scikit-learn – настоящие гении тайм-менеджмента выбирают TPE и Optuna.
А теперь о том, что происходило в последнее время на других ресурсах.
В этой статье я расскажу про ключевые аспекты и концепции работы с наиболее популярными алгоритмами и структурами данных. Это поможет и в реальных проектах, и чтобы глубже понять алгоритмические принципы. Статья подойдёт специалистам, которые хотят углубить свои знания в программировании, и укрепить навыки нахождения оптимальных решений алгоритмических задач.
Это четвертая часть серии мега-учебника по Flask, в которой я собираюсь рассказать вам, как работать с базами данных. Тема этой главы чрезвычайно важна. Для большинства приложений потребуется поддерживать постоянные данные, которые можно эффективно извлекать, и это именно то, для чего созданы базы данных.
A look at what pgMustard does and how to use it with the Django ORM, especially for dissecting slow queries.
В KION в сутки поступает свыше 400 миллионов продуктовых событий (помимо технических). На основе этих событий продуктовые вертикали строят аналитику, следят за продуктом, принимают бизнес решения. Качество поступаемых данных критично важно. В докладе расскажу про весь pipeline событий, как мы их готовим для аналитиков и продактов.
Код на C# и на Go часто пронизан специальными объектами, отвечающими за прекращение работы — они называются токенами отмены, либо в случае Go — контекстами. Это супер-удобно и делает программы компактнее + надежнее, но питонисты про такое почему-то не в курсе. Мне пришлось решать эту проблему и написать свой инструмент + начать популяризировать паттерн.
Когда у вас достаточно большой и разношёрстный спектр запросов клиентов, а вам необходимо все это валидировать, и на это нет ресурсов в виде LLM или NN — "Что же делать?". Расскажу, как сделать классификацию быстро и без больших затрат на разметку и обучение.