Собрали в одном месте самые важные ссылки
читайте нас в Telegram
As an open-source container orchestration platform that automates deployment, scaling, and load balancing, Kubernetes offers unparalleled resilience and flexibility in the management of your Django applications.
Как запустить локально LLM 70B параметров на 1 видеокарте с 24gb? Нужно квантование! Квантование - это процесс уменьшения битности вычислений в нейронной сети, используемых для представления весов, смещений и активаций. Путем снижения точности мы можем значительно сократить требования к памяти и вычислительной сложности модели.
Мульти-тенант (multi-tenancy) — это подход, который позволяет одному экземпляру приложения обслуживать множество клиентов или арендаторов (тенатов). Каждый арендатор изолирован от других, имея возможность кастомизации под свои нужды, при этом основной кодовой базой и инфраструктурой делится между всеми.Когда применять эту замечательную концепцию?
Аалитики данных часто сталкиваются с грязными данными, которые могут существенно замедлить процесс анализа. Грязны данные – это пропущенные значения, дубликаты, неконсистентные данные. Пропущенные значения заставляют нас гадать, что же было замыслено нашим коллегой; дубликаты вводят в заблуждение, умножая одно и то же на количество их копий, а неконсистентные данные заставляют нас сомневаться в каждой цифре.Очищать грязные данные можно c Pandas. Рассмотрим основные методы.
В этом материале мы поговорим об устройстве компонента‑декодера в системах машинного обучения, построенных по архитектуре «трансформер», уделив особое внимание отличию декодера от энкодера.
Python модуль для синтаксического анализа. Скачать можно по ссылке: https://pypi.python.org/pypi/pyparsing/
Речь пойдёт про задачу моделирования поведения маятника: коротко разберём теорию, которая лежит в основе модели, немного подумаем над архитектурой и напишем небольшое приложение на связке Python + Tkinter. Реализация будет поддерживать исследование различных маятников с помощью самописных динамических графиков, в которые пользователь может ввести собственные формулы.
Одно из самых прикладных применений языковых моделей (LLM) - это ответы на вопросы по документу/тексту/договорам. Языковая модель имеет сильную общую логику, а релевантные знания получаются из word, pdf, txt и других источников.Обычно релевантные тексты раскиданы в разных местах, их много и они плохо структурированы. Одна из проблем на пути построения хорошего RAG - нахождение релевантных частей текста под заданный пользователем вопрос. В статье мы посмотрим на способы нахождения релевантных текстов, увидим проблемы, которые в связи с этим возникают.
«Зачем мне SQL и python?» — задают резонный вопрос маркетологи или менеджеры по продукту, особенно в сфере недвижимости, оптовой торговли, услуг для бизнеса: «У нас нет миллионов строк данных, нет логов, мы успешно работаем с несколькими таблицами в excel».
Celery – это асинхронная распределенная очередь задач, написанная на Python, она предназначена для обработки сообщений в реальном времени при помощи многозадачности. Используя Celery, можно организовать выполнение задач в фоновом режиме, не загружая основной поток приложения. Используя Celery можно легко организовать выполнение фоновых задач.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
А теперь о том, что происходило в последнее время на других ресурсах.
Интерактивная оболочка для языка программирования Python. Скачать можно по ссылке: https://pypi.python.org/pypi/IPython
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Мощный web-фреймворк. Скачать можно по ссылке: https://pypi.python.org/pypi/Django/
Недавно дочитал книгу Тиаго Антао, которая в русскоязычном варианте называется «Сверхбыстрый Python», а в оригинале более скромно — «Fast Python». Ее подзаголовок — «Эффективные техники для работы с большими наборами данных».
Простой мощный инструмент тестирования в Python. Скачать можно по ссылке: https://pypi.python.org/pypi/pytest/