Собрали в одном месте самые важные ссылки
читайте авторский блог
Данный туториал пошагово разбирает процесс создания веб-приложения для определения тональности текста на основе NLP-модели. Мы будем использовать модель из библиотеки Hugging Face Hub, но описанный подход подойдет для любой задачи машинного обучения. План:1. Загрузка и подготовка модели машинного обучения для использования в веб-сервисе.2. Создание веб-сервиса с помощью FastAPI.3. Изучение пользовательского интерфейса FastAPI для удобного ручного тестирования и демонстрации работы приложения.4. Написание автоматических тестов с помощью библиотеки pytest.5. Запуск приложения в Docker-контейнере.Код доступен на GitHub.
Идея написать данную статью родилась после моего фейла по разработке данного сервиса. Суть задачи была проста - написать сервер с базовыми методами сохранения и отдачи файлов и сервисными методами по специфичной обработке файлов. Обмен данными (тело запроса, возвращаемые данные) я реализовал через json, про асинхрон идею упустил. По началу всё было хорошо, файлы не превышали размер нескольких мегабайтов, методы использовались редко. Но буквально через пару месяцев размеры файлов стали измеряться десятками мегабайт, количество запросов сотни в минуту. Сервис стал тормозить, возникали ошибки совместного доступа к файлам. «Никогда Штирлиц не был так близок к провалу». В этом кейсе я покажу как я переписал код сервиса.
Модуль для работы с многомерными массивами. Скачать можно по ссылке: https://pypi.python.org/pypi/numpy/
Утилита для управления модулями в Python. Скачать можно по ссылке: https://pypi.python.org/pypi/pip/
Масштабируемый, не блокирующий web-сервер. Скачать можно по ссылке: https://pypi.python.org/pypi/tornado/
Разным командам в нашей компании важно получать доступ к ключевым метрикам пользователей (количество сессий, DAU и другим) в режиме реального времени. Поэтому мы создали свою собственную систему real-time аналитики — быструю, простую и с удобным для нас функционалом. Сегодня я расскажу, как она устроена.
Библиотека работы с базами данных. Скачать можно по ссылке: https://pypi.python.org/pypi/SQLAlchemy/
Очередной выпуск англоязычного подкаста Python Bytes
Как проверить корректность расчета модели? Ну да, верно — скормить ей входные данные со строго определенными параметрами. Звучит не очень сложно, правда? А если факторов более полутора сотен? И часть из них оказывают влияние только при определенном взаимодействии с другими факторами? Такое количество вариантов входных данных вручную придется готовить не один день.
Модуль для автоматизации тестирования web-приложений. Скачать можно по ссылке: https://pypi.python.org/pypi/selenium/
Telegram-боты позволяют решать самые разные задачи. С помощью них можно автоматизировать рабочие процессы. В статье показываем, как разработать бота для приема платежей и развернуть его на облачном сервере.
Инструмент создания виртуального рабочего окружения. Скачать можно по ссылке: https://pypi.python.org/pypi/virtualenv
На фоне новостио датасатанисте, который "клонировал" своих друзей в цифровое пространство, обучив LLM на 500.000 сообщений в групповом чате (на самом деле не только, но причину каждый найдёт для себя сам), будем кормить паранойю и пошагово разбираться, как же уничтожить свой "цифровой след" в мессенджере Telegram.
В последнее время эти ИИ, вроде ChatGPT, врываются прямо во все сферы. И вот благодаря увлечению Data Science можно использовать этих ботов, чтобы помогать людям, да ещё и пообщаться с ними на разные темы. ChatGPT действительно впечатляет. Он не только общается на разные темы, но еще и стихи сочинять умеет. Здорово, правда? Вот один из примеров, которые я получил недавно:
Помню, как несколько лет назад сидел на последнем ряду аудитории и слушал лекцию по теории эволюции. Тогда мне это было особенно интересно: каждый вечер я штудировал доклады Дробышевского, Соколова, Панчина, Гельфанда и других причастных к Антропогенезу. И в один день преподаватель сердито посмотрела в окно и спросила меня, как долго должны ходить по газону люди, чтобы образовалась тропа.
Идея делать нормальный REST на Django – утопия, но некоторые моменты настолько логичные и нет одновременно, что об этом хочется писать. Ниже история про то, как мы сделали ViewSet от GenericViewSet и пары миксинов в DRF, покрыли это все тестами и получили местами странные, но абсолютно обоснованные коды ответов.
Текст может быть полезен новичкам (или чуть более прошаренным) в Django, дабы уложить в голове формирование url’ов и порядок вызова методов permission-классов. Ну а бывалые скажут, что все это баловство и надо было использовать GenericApiView.
Всё началось с голосовых роботов. Во время борьбы с Ковидом наш коллцентр, носящий теперь гордое имя Центр телефонного обслуживания граждан 122, все чаще и чаще выстраивал очереди со временем ожидания ответа оператора свыше 30 минут. Нанять больше людей и начать стабильно укладываться в норматив ответа оператора менее 3-х минут не позволяли размеры помещения и фонда оплаты труда.