Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Как вы знаете, в подборку мы всегда включаем самые интересные публикации на тему машинного обучения, и приоритет отдается проектам с непустыми репозиториями. Так вот, февраль порадовал в этом плане рядом сервисов, поэтому с них и начнем.
Пару недель назад Django 3.2 выпустил свой первый альфа-релиз, а финальный релиз выйдет в апреле. Он содержит микс новых возможностей, о которых вы можете прочитать в примечаниях к релизу. Эта статья посвящена изменениям в тестировании, некоторые из которых можно получить на более ранних версиях Django с пакетами backport.
Думаю, ни для кого не секрет, что в разговорах опытных разработчиков Python, и не только, часто проскальзывают фразы о том, что Django это зло, что в Django плохая архитектура и на ней невозможно написать большой проект без боли. Часто даже средний Django проект сложно поддерживать и расширять. Предлагаю разобраться, почему так происходит и что с Django проектами не так.
Рекрутеры используют всё более сложное ПО и инструменты для анализа и сопоставления присылаемых резюме с размещёнными вакансиями и описанием должностных обязанностей в них. Если в вашем резюме будет представлена только общая информация или если ваши ответы на описание должностных обязанностей будут указаны расплывчато и/или без всякой конкретики, такие инструменты сработают против вас. Ваш отклик на вакансию может быть отвергнут искусственным интеллектом. Да, это действительно так, и бьюсь об заклад, что вы об этом не знали, а если знали, то не верили!В этой статье я хочу представить ряд техник, которые помогут повысить шансы вашего резюме на рассмотрение. В этом практическом примере мы будем использовать алгоритмы обработки текстов на естественных языках (Natural Language Processing, NLP), Python и ряд визуальных инструментов библиотеки Altair. Итак, готовы нанести ответный удар по кадровикам? Приятного чтения!
В автоматизации тестирования я уже более 11 лет. Скажу сразу, что являюсь поклонником старомодного тестирования на Java и очень настороженно отношусь к различным готовым фреймворкам. Если вы придерживаетесь такого же мнения или только задумываетесь об использовании Robot Framework, в этой статье я постараюсь рассказать вам о его ограничениях и, конечно же, опишу все его достоинства.
В данной статье я поделюсь своей реализацией бота для telegram, который может переводить статьи из интернета в mp3-файлы. Для этого я буду использовать python 3.6 и соответствующие библиотеки. Итак, приступим.
Под катом — инструкция по подключению OLED-экрана с диагональю всего 0,96 дюйма. Для этого нужно немного попаять и написать небольшую программу на MicroPython. Подключение экрана производится по I2C-интерфейсу. Все очень просто: с задачей справится даже ребенок. В целом, эта инструкция — для тех, кто только начинает знакомство с платой. Опытные пользователи и так знают, что делать. Если этот пост окажется востребованным, то мы будем регулярно публиковать несложные руководства подобного рода. Что же, давайте приступим.
Недавно я сделал проект, в котором целевая переменная была мультиклассовой, поэтому, я искал подходящие пути для кодирования категориальных признаков. Я нашёл множество статей, перечислявших преимущества кодирования через среднее значение целевой переменной перед другими методами, а также то, как выполнить эту задачу в двух строчках кода, используя библиотеку category_encoders . Однако, к своему удивлению, я обнаружил, что ни одна статья не продемонстрировала этого метода для мультиклассовой целевой переменной. Я просмотрел документацию category_encoders, и понял, что библиотека работает только для бинарных или вещественных переменных, посмотрел оригинальную работу Даниэля Мисси-Баррека (Daniele Micci-Barreca), который ввел средне-целевую кодировку (mean target encoding) и так же не обнаружил ничего толкового.
В этой статье я дам обзор документа, в котором описана кодировка по целевому признаку, и покажу на примере, как целевая кодировка работает для двоичных проблем.
В этой статье я опишу один из подходов для создания json api сервиса с валидацией данных.
Сервис будет реализован на aiohttp. Это современный, постоянно развивающийся фреймворк на языке python, использующий asyncio.
В этой статье я расскажу как написать свою очень простую машину опорных векторов без scikit-learn или других библиотек с готовой реализацией всего в 30 строчек на Python. Если вам хотелось разобраться в алгоритме SMO, но он показался слишком сложным, то эта статья может быть вам полезна.
Удивительное дело, но в русскоязычном сегменте интернета почти нет материала, разъясняющего понятным языком соглашение Эйнштейна о суммировании. Не менее удивительно то, что материалов, позволяющих понять принцип работы функции einsum в русскоязычном интернете ещё меньше. На английском есть довольно развёрнутый ответ о работе einsum на stack overflow, а на русском только некоторое число сайтов, предоставляющих кривой перевод этого самого ответа. Хочу исправить эту проблему с недостатком материалов.
Широкое распространение в последние годы получили программы, которые пытаются предсказать, какие объекты будут интересны пользователю, имея определенную информацию о его профиле. До 2006 года такие алгоритмы не пользовались популярностью. Но все изменилось осенью 2006 года, когда компания Netflix предложила разработчикам 1 000 000$ за лучший алгоритм предсказания. Конкурс продлился 3 года.