Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Не так долго осталось ждать декабря, на который запланирован выпуск новой версия каркаса для веб-разработки Django. Уже сейчас можно ознакомиться с альфа версией готовящегося выпуска.
Рассмотрим, чего нам ждать от новинки.
Данная статья является логическим продолжением рейтинга Лучших статей Хабра за 2018 год. И хотя год еще не закончился, но как известно, летом произошли изменения в правилах, соответственно, стало интересно посмотреть, повлияло ли это на что-нибудь.
Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).
Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным.
Jupyter Notebook – невероятно мощный инструмент для интерактивной разработки и представления проектов в области наук о данных.
На просторах интернета до сих пор остаются актуальными капчи, которые в качестве опции предлагают прослушать текст с картинки, нажав на соответствующую кнопку. Если кому-то знакома картинка ниже и/или есть интерес как ее обойти, используя систему оффлайн распознавания звука, предлагается к прочтению.
В нём есть данные о росте и весе 10 000 мужчин и женщин. Никакого описания. Ничего «лишнего». Только рост, вес и метка пола. Эта таинственная простота мне понравилась.