IT-новости про Python, которые стоит знать

Собрали в одном месте самые важные ссылки
читайте нас в Twitter

     03.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Сводка новостей от python.net 27.10.2019 — 03.11.2019

А теперь о том, что происходило в последнее время на других ресурсах.

     02.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи
     02.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Python v3.x: как увеличить скорость декоратора без регистрации и смс

Вначале была эта статья. Потом к ней появился комментарий. А в результате я углубился в чтение матчасти, закопался в дебаг и смог оптимизировать код из первой части этой истории. Предлагаю вместе со мной пройтись по основным моментам.

Для начала хочу поблагодарить Mogost. Благодаря его комментарию я пересмотрел подход к Пайтону. Я и ранее слыхал о том, что среди пайтонистов достаточно много неэкономных ребят (при обращении с памятью), а теперь выяснилось, что я как-то незаметно для себя присоединился к этой тусовке.

     02.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи
     02.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Релизы
     01.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Реализация остальных возможностей PEG

После того, как я собрал все части генератора PEG-парсеров воедино в предыдущем посте, я готов показать как реализовать и некоторые другие интересные штуки.

     01.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Python за месяц

Руководство для абсолютных новичков.

     01.11.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Вывод модели динамической системы дискретного фильтра Калмана для произвольной линейной системы

Фильтр Калмана (ФК) является оптимальным линейным алгоритмом фильтрации параметров динамической линейной системы при наличии неполных и зашумленных наблюдений. Этот фильтр находит широкое применение в технических системах управления до оценок динамики изменения макроэкономических ситуаций или общественного мнения

     31.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Автоматическая визуализация python-кода. Часть четвертая: поддержка документирования

Ссылки на предыдущие части:

 

  • Часть первая — введение, графические примитивы, необходимые для создания графического представления кода
  • Часть вторая — реализация генератора графического представления кода (выполнена, в основном, на Питоне), микро язык разметки
  • Часть третья — новые возможности графики
Пример среды, поддерживающей такое графическое представление показан на картинке ниже.

     31.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

What You Probably Don't Know About Python Decorators

Несколько нечасто обсуждаемых примеров использования декораторов. Один пример в конце, о котором скорее всего вообще никто не задумывается

     30.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Мета-грамматика для PEG парсера

На этой неделе мы делаем генератор парсеров «самостоятельным», то есть он будет генерировать свой собственный парсер.

     29.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Многопроцессный доступ к Intel Neural Computer Stick через REST

В прошлой серии я поставил на танк Intel Neural Computer Stick 2 и перекинул на него все нейросетевые вычисления, отказавшись от Tensorflow и OpenCV-DNN.

Была проблема, с которой я столкнулся уже тогда — невозможность работать с NCS из нескольких процессов одновременно. Тогда это было не критично, а сейчас пришло время разобраться.

     29.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Как мы используем цепи Маркова в оценке решений и поиске багов. Со скриптом на Python

Нам важно понимать, что происходит с нашими студентами во время обучения, и как эти события влияют на результат, поэтому мы выстраиваем Customer Journey Map — карту клиентского опыта. Ведь процесс обучения — не нечто непрерывное и цельное, это цепочка взаимосвязанных событий и действий студента, причем эти действия могут сильно отличаться у разных учеников. Вот он прошел урок: что он сделает дальше? Пойдет в домашнее задание? Запустит мобильное приложение? Изменит курс, попросит сменить учителя? Сразу зайдет в следующий урок? Или просто уйдет разочарованным? Можно ли, проанализировав эту карту, выявить закономерности, приводящие к успешному окончанию курса или наоборот, «отваливанию» студента?

     29.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Python v3.x: обработчик исключений для корутин и синхронных функций. Вобщем, для всего

В свободное время я работаю над своим небольшим проектом. Написан на Python v3.x + SQLAlchemy. Возможно, я когда-нибудь напишу и о нем, но сегодня хочу рассказать о своем декораторе для обработки исключений. Его можно применять как для функций, так и для методов. Синхронных и асинхронных. Также можно подключать кастомные хэндлеры исключений.

     29.10.2019       Выпуск 306 (28.10.2019 - 03.11.2019)       Статьи

Превращаем скрипты в красивые инструменты для машинного обучения

Мой опыт подсказывает, что любой более или менее сложный проект по машинному обучению рано или поздно превращается в набор сложных неподдерживаемых внутренних инструментов. Эти инструменты, как правило, мешанина из скриптов Jupyter Notebooks и Flask, которые сложно развёртывать и интегрировать с решениями типа GPU сессий Tensorflow.

 

Впервые я столкнулся с этим в университете Карнеги, затем в Беркли, в Google X, и, наконец, при создании автономных роботов в Zoox. Зарождались инструменты в виде небольших Jupyter notebooks: утилита калибровки сенсора, сервис моделирования, приложение LIDAR, утилита для сценариев и т.д.

С ростом важности инструментов появлялись менеджеры. Бюрократия росла. Требования повышались. Маленькие проекты превращались в огромные неуклюжие кошмары.