Собрали в одном месте самые важные ссылки
консультируем про IT, Python
Как часто Вы сталкиваетесь с проблемой повторением ваших экспериментов в Ml? А Вы уже следите за Вашим процессом и его репрезентативностью? Оказываться, что уже давно существуют инструменты позволяющие контролировать процесс ML, один их этих инструментов - DVC. Инструмент, которые совместно с GIT может хранить не только Ваш код, но и Ваши данные и обученные модели. Основывая свой доклад на своей повседневной рабочей деятельности, разберем способы инициализации и первой настройки. Разберем, что нужно знать и как правильно использовать дата пайплайны при помощи DVC, да и как же он хранит данные, не только для повторения процесса, но и для совместной работы
Мы рады сообщить, что сентябрьское обновление расширения Python для Visual Studio Code уже доступно. Вы можете загрузить расширение Python из Marketplace или установить его прямо из галереи расширений в Visual Studio Code. Если у вас уже установлено расширение Python, вы также можете получить последнее обновление, перезапустив Visual Studio Code. Вы можете узнать больше о поддержке Python в Visual Studio Code в документации.
В связи с повсеместным хайпом по поводу Чернобыля в начале лета (по крайней мере в среде ядерной энергетики), а также гремящих словах цифровизация и геймификация, мы в ИБРАЭ РАН решили создать некоторое подобие квеста-приложения в котором концептуально моделируется эксплуатация энергоблока атомной станции и провести его тестирование в Битцевском парке.
Мощный и быстрый модуль для обработки XML/HTML. Изменения описаны по ссылке https://allmychanges.com/p/python/lxml/#4.3.2. Скачать можно по ссылке: http://pypi.python.org/pypi/lxml/
REPL для Postgres. Изменения описаны по ссылке https://allmychanges.com/p/python/pgcli/#2.1.0. Скачать можно по ссылке: https://pypi.python.org/pypi/pgcli/
В экосистеме Python существует множество пакетов для CLI-приложений, как популярных, вроде Click, так и не очень. Наиболее распространённые были рассмотрены в предыдущей статье, здесь же будут показаны малоизвестные, но не менее интересные.
Про изменение климата сейчас не говорит только ленивый. И случайно найдя неплохой сайт с историческими данными, стало интересно проверить — как же реально менялась температура с годами. Для теста мы возьмем данные с нескольких городов и проанализируем их с помощью Pandas и Matplotlib. Заодно выясним, где теплее, в Москве или Петербурге.
Сегодня публикуем вторую часть перевода материала о том, как в Dropbox организовывали контроль типов нескольких миллионов строк Python-кода.
Продолжение цикла статей.
Продолжаем тему как вызывать C/C++ из Python3. Теперь используем C API для создания модуля, на этом примере мы сможем разобраться как работает cffi и прочие библиотеки упрощающие нам жизнь. Потому что на мой взгляд это самый трудный способ.
Если вы совершено не знакомы с асинхронным программированием и хотите разобраться с этим максимально простым способом, это статья для вас. В статье рассказывается то такое синхронные и асинхронные программы, и их отличия.
Оригинальная статья: Doug Farrell – Getting Started With Async Features in Python
Сегодня мы предлагаем вашему вниманию первую часть перевода материала о том, как в Dropbox занимаются контролем типов Python-кода.
В Dropbox много пишут на Python. Это — язык, который мы используем чрезвычайно широко — как для бэкенд-сервисов, так и для настольных клиентских приложений. Ещё мы в больших объёмах применяем Go, TypeScript и Rust, но Python — это наш главный язык. Если учитывать наши масштабы, а речь идёт о миллионах строк Python-кода, оказалось, что динамическая типизация такого кода неоправданно усложнила его понимание и начала серьёзно влиять на продуктивность труда. Для смягчения этой проблемы мы приступили к постепенному переводу нашего кода на статическую проверку типов с использованием mypy. Это, вероятно, самая популярная самостоятельная система проверки типов для Python. Mypy — это опенсорсный проект, его основные разработчики трудятся в Dropbox.