Собрали в одном месте самые важные ссылки
читайте нас в Telegram
Перед тобой статья-путеводитель по открытым наборам данных для машинного обучения. В ней я, для начала, соберу подборку интересных и свежих (относительно) датасетов. А бонусом, в конце статьи, прикреплю полезные ссылки по самостоятельному поиску датасетов.
Это третья статья из серии про разработку простого веб-сервера на Python. В ней рассматривается, как написать с нуля свой HTTP-сервер, основываясь на работе с TCP-сокетами.
Вторая часть серии статей про классификацию покрова земли, используя библиотеку eo-learn. Напоминаем, что в первой статье было продемонстрировано следующее:
К тому же, мы провели поверхностное исследование данных, что является крайне важным шагом перед началом погружения в машинное обучение. Вышеупомянутые задачи дополнялись примером в виде блокнота Jupyter Notebook, который теперь содержит материал из этой статьи.
24-25 июня в 95 км от Москвы пройдет седьмая российская конференция для python-программистов PYCON RUSSIA 2019.
Уже в программе: Raymond Hettinger (Python core developer, США), Michael Foord (Python core developer, Англия), Travis Oliphant (автор SciPy, NumPy, Anaconda, США), Antonio Cuni (PyPy core developer, Италия), Григорий Бакунов (Яндекс), Андрей Власовских (JetBrains), Кирилл Борисов (Booking.com), Вадим Пуштаев (Mail.Ru Group), Александр Хаёров (Chainstack), Иван Цыганов (Positive Technologies), Алексей Кузьмин (ДомКлик), Злата Обуховская (евангелист Moscow Python), Василий Литвинов (Intel). И это только предварительная программа.
Примерно полгода назад был сделан первый коммит в репозиторий eo-learn на GitHub. Сегодня, eo-learn превратился в замечательную библиотеку с открытым исходным кодом, готовую для использования кем угодно, кто заинтересован в данных EO (Earth Observation — пр. пер.). Все в команде Sinergise ожидали момента перехода от этапа построения необходимых инструментов, к этапу их использования для машинного обучения. Пришло время представить вам серию статей, касающихся классификации покрова земли используя eo-learn
Dropbox очаровал меня сразу с момента своего появления. Концепция по-прежнему обманчиво проста. Вот папка. Кладёшь туда файлы. Он синхронизируется. Переходишь к другому устройству. Он опять синхронизируется. Папка и файлы теперь появились и там!
Объём скрытой фоновой работы на самом деле поражает. Во-первых, никуда не исчезают все проблемы, с которыми приходится иметь дело при создании и обслуживании кросс-платформенного приложения для основных десктопных операционных систем (OS X, Linux, Windows). Добавьте к этому поддержку различных веб-браузеров, различных мобильных операционных систем. И мы говорим только о клиентской части. Меня интересует также бэкенд Dropbox, который позволил достичь такой масштабируемости и низкой задержки с безумно тяжёлой рабочей нагрузкой, которую создают полмиллиарда пользователей.
Почему может возникнуть необходимость в изучение различных способов хранения и доступа к изображениям в Python? Так например если вам будет