Собрали в одном месте самые важные ссылки
читайте авторский блог
Это перевод статьи Understanding Q-Learning, the Cliff Walking problem Lucas Vazquez
В последнем посте мы представили проблему «Прогулка по скале» и остановились на страшном алгоритме, который не имел смысла. На этот раз мы раскроем секреты этого серого ящика и увидим, что это совсем не так страшно.
Серия статей содержит разбор задач, которые дают в 8 классе на уроках информатики в Челябинском физико-математическом лицее №31.
Перевод статьи Nicholas Samuel "Introduction to Python Decorators"
Думал, что после стольких лет Python уже не удивит меня, однако пословица Век живи, век учись стала для меня как никогда актуальной вчера. Задача была весьма простая: отсортировать список с строками, где строка - это украинское имя, то есть вроде бы все должно быть предельно просто используя Python 3.7.2:
Не так давно развернулись дискуссии на тему введения денежного штрафа за превышение скорости на более чем 10 км/ч от разрешенной. Традиционно для Интернета они ведутся неконструктивно, поэтому я в целом не поддерживаю ни одну сторону подобных холиваров.
Аргументы автовладельцев в массе сводятся к огрызаниям «мне надо», которые, разумеется, не тождественны. На значительную долю людей, вынужденно ездящих на работу по 50 км ежедневно через локации, не охваченные общественным транспортом, приходится не меньшая доля ездящих на машине «в булочную», что хорошо видно по этим самым машинам, оставленным утром у дома в первый же мало-мальский снег.
Со стороны урбанистов часто слышны довольно однобокая аргументация, заезженные частные примеры европейских стран, население которых иногда целиком сопоставимо с суточным московским автотрафиком, приемы вроде оскорбительных штампов про «быдлоповозки».
А когда наступает такая ситуация, нет ничего лучше, чем отбросить чужие эмоции и призвать двух беспристрастных помощников — матана и Питона.
Та работа, которую я хочу представить вашему вниманию, есть попытка еще раз написать систему скриптового 3д моделирования. Написать так, как я её хотел бы видеть.
Рецепт системы ZenCad довольно прост. Концепт скриптового 3д моделирования OpenScad, геометрическое ядро OpenCascade, python3 в качестве клея, библиотека ленивых вычислений evalcache для агресивного кеширования вычислений. Добавить специй еще из пары-тройки инструментов, приправить gui под соусом PyQt, и подать к столу перемешав, но не взбалтывая.
Сегодня миниатюрный туториал о том, как сделать разбор строки с математическим выражением и вычислить его используя нечеткие треугольные числа. При соответствующих изменениях кода туториал сгодится для работы и с другими «кастомными» переменными. Справка: нечеткие треугольные числа — частный случай нечетких чисел (нечетких переменных на числовой оси). Ознакомиться подробнее рекомендую здесь и здесь.
Аудио-подкаст
О новом инструменте, упрощающем работу с ctypes.
Продолжаем рассказ о том как распознавать номерные знаки для тех кто умеет писать приложение «hello world» на python-е! В этой части научимся тренировать модели, которые ищут регион заданного объекта, а также узнаем как написать простенькую RNN-сеть, которая будет справляться с чтением номера лучше чем некоторые коммерческие аналоги.
В этой части я расскажу как тренировать Nomeroff Net под Ваши данные, как получить высокое качество распознавания, как настроить поддержку GPU и ускорить все на порядок…
В этой статье я расскажу про пять архитектурных принципов программирования, которые помогут сделать ваш код гибким, понятным и легко поддерживаемым. Все о чем будет рассказано далее находится в книги Роберт К. Мартин Гибкая разработка программ. Принципы, примеры, практика (Agile Software Development Principles, Patterns and Practices )
Когда у вас возникает какая-то проблема, вы начинаете искать способы ее решения, параллельно думая, как бы снова не пройтись по этим же самым граблям в следующий раз. Что бы вы ни делали, от небольших мобильных приложений до громоздких информационных систем, у ошибки всегда есть цена, и чем более критична отрасль, в которой используется ваш продукт, тем выше цена этой ошибки. Поэтому идеальной видится ситуация, когда вы работаете на опережение, а именно — пытаетесь предсказать возникновение проблемы до ее фактического наступления.
Сложение и вычитание словарей становятся чуть реальнее.
В рамках этой статьи будет использоваться пакет SDK для Машинного обучения Azure для Python 3 для создания и применения рабочей области Службы машинного обучения Azure. Эта рабочая область — основной блок в облаке для экспериментов, обучения и развертывания моделей машинного обучения с помощью Машинного обучения Azure.