Собрали в одном месте самые важные ссылки
читайте нас в Twitter
Всем здравствуйте, вот мы и подошли к конечной части. Приятного чтения!
Для нового проекта мне понадобилось извлечь данные уровней из классической видеоигры 1985 года Super Mario Bros (SMB). Если конкретнее, то я хотел извлечь фоновую графику каждого уровня игры без интерфейса, подвижных спрайтов и т.п.
Разумеется, я просто мог склеить изображения из игры и, возможно, автоматизировать процесс с помощью техник машинного зрения. Но мне показался более интересным описанный ниже метод, позволяющий исследовать те элементы уровней, которые нельзя получить с помощью скриншотов.
На первом этапе проекта мы изучим язык ассемблера 6502 и написанный на Python эмулятор. Полный исходный код выложен здесь.
К написанию статьи меня подтолкнула вот эта новость (+исследование) про изобретение генератора мемов учеными из Стэнфордского университета. В своей статье я попытаюсь показать, что вам не нужно быть ученым из Стэнфорда, чтобы делать с нейросетями интересные вещи. В статье я описываю, как в 2017 году мы обучили нейронную сеть на корпусе из примерно 30 000 текстов и заставили ее генерировать новые интернет-мемы и мемы (коммуникационные знаки) в социологическом смысле слова. Описан использованный нами алгоритм машинного обучения, технические и административные трудности, с которыми мы столкнулись.
Предположу, что для управления Python окружением в вашем проекте до сих пор используется pip и virtualenv.
Если это так, то позвольте рассказать о таком инструменте, как Pipenv.
Pipenv — это современный инструмент для управления рабочим окружением в Python.
Основные возможности pipenv:
HDF5 позволяет эффективно хранить большие объемы данных
При работе с большими объемами данных, будь то экспериментальные или имитируемые, их хранение в нескольких текстовых файлах не очень эффективно. Иногда вам нужно получить доступ к конкретному подмножеству данных, и вы хотите сделать это быстро. В этих ситуациях формат HDF5 решает обе проблемы благодаря очень оптимизированной надстроенной библиотеке. HDF5 широко используется в научных средах и имеет отличную реализацию в Python, предназначенную для работы с NumPy прямо из коробки.
В конце зимы этого года прошло соревнование IEEE's Signal Processing Society — Camera Model Identification. Я участвовал в этом командном соревновании в качестве ментора. Об альтернативном способе формирования команды, решении и втором этапе под катом
Не так давно на просторах интернета узнал о такой замечательной и удивительной копии Вавилонской библиотеки как о формуле Таппера. Вернее, это больше неравенство Таппера, чем формула. Особенность данного неравенства — оно создает собственное же изображение на графике. Просто посмотрите на это чудо!
На Raspberry pi
Статья о том, как сделать поисковую страницу на сайте, которая будет искать контент сразу в нескольких моделях данных, без использования сторонних библиотек.
Опубликованная в 2014-м исследовательская работаGenerative Adversarial Nets (GAN) стала прорывом в сфере генеративных моделей. Ведущий исследователь Янн Лекун назвал состязательные сети (adversarial nets) «лучшей идеей в машинном обучении за последние двадцать лет». Сегодня благодаря этой архитектуре мы можем создать ИИ, который генерирует реалистичные изображения кошек. Круто же!
Несколько способов